We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n,$ a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}$ and a pseudo inner product $\bm{g}$ on $V.$
> *Definition 1*: let $\pi = [\pi(1), \dots, \pi(k)]$ be any permutation of the set $\{1, \dots, k\}$, then $\mathbf{T} \in \mathscr{T}^0_q(V)$ is a **symmetric covariant** $q$-tensor if for all $\mathbf{v}_1, \dots, \mathbf{v}_q \in V$ we have
> Likewise, $\mathbf{T} \in \mathscr{T}^p_0(V)$ is a **symmetric contravariant** $p$-tensor if for all $\mathbf{\hat u}_1, \dots, \mathbf{\hat u}_p \in V^*$ we have
> *Definition 2*: the vector space of symmetric covariant $q$-tensors is denoted by $\bigvee_q(V) \subset \mathscr{T}^0_q(V)$ and the vector space of symmetric contravariant $p$-tensors is denoted by $\bigvee^p(V) \subset \mathscr{T}^p_0(V).$
> *Definition 3*: let $\pi = [\pi(1), \dots, \pi(k)]$ be any permutation of the set $\{1, \dots, k\}$, then $\mathbf{T} \in \mathscr{T}^0_q(V)$ is an **antisymmetric covariant** $q$-tensor if for all $\mathbf{v}_1, \dots, \mathbf{v}_q \in V$ we have
> Likewise, $\mathbf{T} \in \mathscr{T}^p_0(V)$ is an **antisymmetric contravariant** $p$-tensor if for all $\mathbf{\hat u}_1, \dots, \mathbf{\hat u}_p \in V^*$ we have
This antisymmetry implies that the ordering of the (co)vector arguments in a tensor evaluation only change the sign of the outcome.
> *Definition 4*: the vector space of antisymmetric covariant $q$-tensors is denoted by $\bigwedge_q(V) \subset \mathscr{T}^0_q(V)$ and the vector space of antisymmetric contravariant $p$-tensors is denoted by $\bigwedge^p(V) \subset \mathscr{T}^p_0(V).$
Alternatively one may write $\bigwedge_q(V) = V^* \otimes_a \cdots \otimes_a V^*$ and $\bigwedge^p(V) = V \otimes_a \cdots \otimes_a V.$
It follows from the definitions of symmetric and antisymmetric tensors that for $0$-tensors we have
If $\mathbf{T} \in \bigvee_q(V)$ then $\mathbf{T} = \mathscr{S}(\mathbf{T})$. The symmetrisation map is idempotent such that $\mathscr{S} \circ \mathscr{S} = \mathscr{S}.$
> *Definition 6*: the linear **antisymmetrisation map** $\mathscr{A}: \mathscr{T}^0_q(V) \to \bigwedge_q(V)$ is given by
If $\mathbf{T} \in \bigwedge_q(V)$ then $\mathbf{T} = \mathscr{A}(\mathbf{T})$. The antisymmetrisation map is idempotent such that $\mathscr{A} \circ \mathscr{A} = \mathscr{A}.$
## Symmetric product
The outer product does not preserve (anti)symmetry. For this reason alternative product operators are introduced which preserve (anti)symmetry. The following statements are given with covariant tensors without loss of generality.
> *Definition 7*: the **symmetric product** between two tensors is defined as
> for all $\mathbf{T} \in \mathscr{T}^0_q(V)$ and $\mathbf{S} \in \mathscr{T}^0_s(V)$ with $q,s \in \mathbb{N}$.
It follows from definition 7 that the symmetric product is associative, bilinear and symmetric. Subsequently, we may write a basis of $\bigvee_q(V)$ as
> for all $\mathbf{T} \in \mathscr{T}^0_q(V)$ and $\mathbf{S} \in \mathscr{T}^0_s(V)$ with $q,s \in \mathbb{N}$.
It follows from definition 8 that the antisymmetric product is associative, bilinear and antisymmetric. Subsequently, we may write a basis of $\bigwedge_q(V)$ as
In some literature theorem 2 is used as definition for the symmetric and antisymmetric product from which the relation with the symmetrisation maps can be proven. Either method is valid, however it has been chosen that defining the products in terms of the symmetrisation maps is more general.