> *Definition*: a wave is a propagating disturbance transporting energy and momentum. A $1 + 1$ dimensional wave $\Psi: \mathbb{R}^2 \to \mathbb{R}$ travelling can be defined by a linear combination of a right and left travelling function $f,g: \mathbb{R} \to \mathbb{R}$ obtaining
>
> $$
> \Psi(x,t) = f(x - vt) + g(x + vt),
> $$
>
> for all $(x,t) \in \mathbb{R}^2$ and $v \in \mathbb{R}$ the speed of the wave. Satisfies the $1 + 1$ dimensional wave equation
The derivation of the wave equation can be obtained in section...
> *Theorem*: a right travelling harmonic wave $\Psi: \mathbb{R}^2 \to \mathbb{R}$ with $\lambda, T, A, \varphi \in \mathbb{R}$ the wavelength, period, amplitude and phase of the wave is given by
>
> $$
> \begin{align*}
> \Psi(x,t) &= A \sin \big(k(x-vt) + \varphi\big), \\
> for all $(x,t) \in \mathbb{R}^2$. With $k = \frac{2\pi}{\lambda}$ the wavenumber, $\omega = \frac{2\pi}{T}$ the angular frequency and $v = \frac{\lambda}{T}$ the wave speed.
We may formulate various solutions $\Psi: \mathbb{R}^4 \to \mathbb{R}$ for this wave equation.
The first solution may be the plane wave that follows cartesian symmetry and can therefore best be described in a cartesian coordinate system $\mathbf{v}(x,y,z)$. The solution is given by
for all $(\mathbf{v}, t) \in \mathbb{R}^4$ with $\mathbf{k} \in \mathbb{R}^3$ the wavevector.
The second solution may be the cylindrical wave that follows cylindrical symmetry and can therefore best be described in a cylindrical coordinate system $\mathbf{v}(r,\theta,z)$. The solution is given by
The third solution may be the spherical wave that follows spherical symmetry and can therefore best be described in a spherical coordinate system $\mathbf{v}(r, \theta, \varphi)$. The solution is given by