Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
## Curvature operator
> *Definition 1*: the **curvature operator** $\Omega: \Gamma(\mathrm{TM})^3 \to \Gamma(\mathrm{TM})$ is defined as
> for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$ with $[\cdot, \cdot]$ denoting the [Lie bracket]().
It then follows from the definition that the curvature operator $\Omega$ can be decomposed.
> *Proposition 1*: the decomposition of the curvature operator $\Omega$ relative to a basis $\{\partial_i\}_{i=1}^n$ of $\Gamma(\mathrm{TM})$ results into
> *Definition 2*: the **Riemann curvature tensor** $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ is defined as
The Riemann curvature defines the curvature of the differential manifold at a certain point $x \in \mathrm{M}$.
> *Proposition 2*: let $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ be the Riemann curvature tensor, with its decomposition given by