From 0d1de9a6aaddc9b9c51b3b9ce34a1cf0ba80e349 Mon Sep 17 00:00:00 2001 From: Luc Date: Tue, 9 Jan 2024 20:38:44 +0100 Subject: [PATCH] Added determinants to linear algebra section. --- config/en/mkdocs.yaml | 1 + .../linear-algebra/determinants.md | 94 +++++++++++++++++++ 2 files changed, 95 insertions(+) create mode 100644 docs/en/mathematics/linear-algebra/determinants.md diff --git a/config/en/mkdocs.yaml b/config/en/mkdocs.yaml index f9546cb..e47de3d 100755 --- a/config/en/mkdocs.yaml +++ b/config/en/mkdocs.yaml @@ -85,6 +85,7 @@ nav: - 'Matrix arithmetic': mathematics/linear-algebra/matrices/matrix-arithmetic.md - 'Matrix algebra': mathematics/linear-algebra/matrices/matrix-algebra.md - 'Elementary matrices': mathematics/linear-algebra/matrices/elementary-matrices.md + - 'Determinants': mathematics/linear-algebra/determinants.md - 'Calculus': - 'Limits': mathematics/calculus/limits.md - 'Continuity': mathematics/calculus/continuity.md diff --git a/docs/en/mathematics/linear-algebra/determinants.md b/docs/en/mathematics/linear-algebra/determinants.md new file mode 100644 index 0000000..130f7e7 --- /dev/null +++ b/docs/en/mathematics/linear-algebra/determinants.md @@ -0,0 +1,94 @@ +# Determinants + +## Definition + +With each $n \times n$ matrix $A$ with $n \in \mathbb{N}$ it is possible to associate a scalar, the determinant of $A$ denoted by $\det (A)$ or $|A|$. + +> *Definition*: let $A = (a_{ij})$ be an $n \times n$ matrix and let $M_{ij}$ denote the $(n-1) \times (n-1)$ matrix obtained from $A$ by deleting the row and column containing $a_{ij}$ with $n \in \mathbb{N}$ and $(i,j) \in \{1, \dots, n\} \times \{1, \dots, n\}$. The determinant of $M_{ij}$ is called the **minor** of $a_{ij}$. We define the **cofactor** of $A_{ij}$ of $a_{ij}$ by +> +> $$ +> A_{ij} = (-1)^{i+j} \det(M_{ij}). +> $$ + +This definition is necessary to formulate a definition for the determinant, as may be observed below. + +> *Definition*: the **determinant** of an $n \times n$ matrix $A$ with $n \in \mathbb{N}$, denoted by $\det (A)$ or $|A|$ is a scalar associated with the matrix $A$ that is defined inductively as +> +> $$ +> \det (A) = \begin{cases}a_{11} &\text{ if } n = 1 \\ a_{11} A_{11} + a_{12} A_{12} + \dots + a_{1n} A_{1n} &\text{ if } n > 1\end{cases} +> $$ +> +> where +> +> $$ +> A_{1j} = (-1)^{1+j} \det (M_{1j}) +> $$ +> +> with $j \in \{1, \dots, n\}$ are the cofactors associated with the entries in the first row of $A$. + +
+ +> *Theorem*: if $A$ is an $n \times n$ matrix with $n \in \mathbb{N} \backslash \{1\}$ then $\det(A)$ cam be expressed as a cofactor expansion using any row or column of $A$. + +??? note "*Proof*:" + + Will be added later. + +We then have for a $n \times n$ matrix $A$ with $n \in \mathbb{N} \backslash \{1\}$ + +$$ +\begin{align*} + \det(A) &= a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}, \\ + &= a_{1j} A_{1j} + a_{2j} A_{2j} + \dots + a_{nj} A_{nj}, +\end{align*} +$$ + +with $i,j \in \mathbb{N}$. + +For example, the determinant of a $4 \times 4$ matrix $A$ given by + +$$ + A = \begin{pmatrix} 0 & 2 & 3 & 0\\ 0 & 4 & 5 & 0\\ 0 & 1 & 0 & 3\\ 2 & 0 & 1 & 3\end{pmatrix} +$$ + +may be determined using the definition and the theorem above + +$$ + \det(A) = 2 \cdot (-1)^5 \det\begin{pmatrix} 2 & 3 & 0\\ 4 & 5 & 0\\ 1 & 0 & 3\end{pmatrix} = -2 \cdot 3 \cdot (-1)^6 \det\begin{pmatrix} 2 & 3 \\ 4 & 5\end{pmatrix} = 12. +$$ + +## Properties of determinants + +> *Theorem*: if $A$ is an $n \times n$ matrix then $\det (A^T) = \det (A)$. + +??? note "*Proof*:" + + It may be observed that the result holds for $n=1$. Assume that the results holds for all $k \times k$ matrices and that $A$ is a $(k+1) \times (k+1)$ matrix for some $k \in \mathbb{N}$. Expanding $\det (A)$ along the first row of $A$ obtains + + $$ + \det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + \dots + (-1)^{k+2} a_{1(k+1)} \det(M_{1(k+1)}), + $$ + + since the minors are all $k \times k$ matrices it follows from the principle of natural induction that + + $$ + \det(A) = a_{11} \det(M_{11}^T) - a_{12} \det(M_{12}^T) + \dots + (-1)^{k+2} a_{1(k+1)} \det(M_{1(k+1)}^T). + $$ + + The right hand side of the above equation is the expansion by minors of $\det(A^T)$ using the first column of $A^T$, therefore $\det(A^T) = \det(A)$. + +> *Theorem*: if $A$ is an $n \times n$ triangular matrix with $n \in \mathbb{N}$, then the determinant of $A$ equals the product of the diagonal elements of $A$. + +??? note "*Proof*:" + + Will be added later. + +> *Theorem*: let $A$ be an $n \times n$ matrix +> +> 1. if $A$ has a row or column consisting entirely of zeros, then $\det(A) = 0$. +> 2. if $A$ has two identical rows or two identical columns, then $\det(A) = 0$. + +??? note "*Proof*:" + + Will be added later. +