Updated formal definitions of the limit.
This commit is contained in:
parent
e971bf9bcf
commit
0eed6a8a93
1 changed files with 20 additions and 3 deletions
|
@ -44,11 +44,28 @@ If $\lim_{x \to a} f(x) = L$, $\lim_{x \to a} g(x) = M$, and $k$ is a constant t
|
||||||
The limit $\lim_{x \to a} f(x) = L$ means,
|
The limit $\lim_{x \to a} f(x) = L$ means,
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\forall \varepsilon > 0, \exists \delta \space \mathrm{,s.t.,} \space
|
\forall \varepsilon_{> 0} \exists \delta_{>0} \Big[ 0<|x-a|<\delta \implies |f(x) - L| < \varepsilon \Big].
|
||||||
\forall x \in \mathbb{R}, \space 0<|x-a|<\delta \implies |f(x) - L| < \varepsilon
|
|
||||||
$$
|
$$
|
||||||
|
|
||||||
For one-sided, infinite and limits at infinity there are similar formal definitions.
|
The limit $\lim_{x \to \infty} f(x) = L$ means,
|
||||||
|
|
||||||
|
$$
|
||||||
|
\forall \varepsilon_{> 0} \exists N_{>0} \Big[x > N \implies |f(x) - L | < \varepsilon \Big].
|
||||||
|
$$
|
||||||
|
|
||||||
|
The limit $\lim_{x \to a} f(x) = \infty$ means,
|
||||||
|
|
||||||
|
$$
|
||||||
|
\forall M_{> 0} \exists \delta_{>0} \Big[ 0<|x-a|<\delta \implies f(x) > M \Big].
|
||||||
|
$$
|
||||||
|
|
||||||
|
The limit $\lim_{x \to \infty} f(x) = \infty$ means,
|
||||||
|
|
||||||
|
$$
|
||||||
|
\forall M_{> 0} \exists N_{>0} \Big[ x > N \implies f(x) > M \Big].
|
||||||
|
$$
|
||||||
|
|
||||||
|
For one-sided limits there are similar formal definitions.
|
||||||
|
|
||||||
### Example
|
### Example
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue