1
0
Fork 0

Updated and added some parts to differential geometry and tensors.

This commit is contained in:
Luc Bijl 2024-06-20 20:09:38 +02:00
parent cf378f5791
commit 2983b6afc4
5 changed files with 80 additions and 7 deletions

View file

@ -28,7 +28,7 @@ It then follows from the definition that the curvature operator $\Omega$ can be
## Curvature tensor ## Curvature tensor
> *Definition 2*: the Riemann curvature tensor $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ is defined as > *Definition 2*: the **Riemann curvature tensor** $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ is defined as
> >
> $$ > $$
> \mathbf{R}(\bm{\omega}, \mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbf{k}(\bm{\omega}, \Omega(\mathbf{v}, \mathbf{w}) \mathbf{u}), > \mathbf{R}(\bm{\omega}, \mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbf{k}(\bm{\omega}, \Omega(\mathbf{v}, \mathbf{w}) \mathbf{u}),
@ -36,3 +36,28 @@ It then follows from the definition that the curvature operator $\Omega$ can be
> >
> for all $\bm{\omega} \in \Gamma(\mathrm{T}^*\mathrm{M})$ and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$. > for all $\bm{\omega} \in \Gamma(\mathrm{T}^*\mathrm{M})$ and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$.
The Riemann curvature defines the curvature of the differential manifold at a certain point $x \in \mathrm{M}$.
> *Proposition 2*: let $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ be the Riemann curvature tensor, with its decomposition given by
>
> $$
> \mathbf{R} = R^i_{jkl} \partial_i \otimes dx^j \otimes dx^k \otimes dx^l,
> $$
>
> then we have that its holor is given by
>
> $$
> R^i_{jkl} = \partial_k \Gamma^i_{jl} + \Gamma^m_{jl} \Gamma^i_{mk} - \partial_k \Gamma^i_{jk} - \Gamma^m_{jk} \Gamma^i_{ml},
> $$
>
> for all $(i,j,k,l) \in \{1, \dots, n\}^4$ with $\Gamma^i_{jk}$ denoting the linear connection symbols.
??? note "*Proof*:"
Will be added later.
It may then be observed that $R^i_{jkl} = - R^i_{jlk}$ such that
$$
\mathbf{R} = \frac{1}{2} R^i_{jkl} \partial_i \otimes dx^j \otimes (dx^k \wedge dx^l).
$$

View file

@ -0,0 +1,47 @@
# Lengths and volumes
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
## Riemannian geometry
> *Definition 1*: the length of a vector $\mathbf{v} \in \Gamma(\mathrm{TM})$ is defined by the norm $\|\cdot\|$ induced by the inner product $\bm{g}$ such that
>
> $$
> \|\mathbf{v}\| = \sqrt{\bm{g}(\mathbf{v},\mathbf{v})}.
> $$
In the context of a smooth curve $\mathbf{v}: \mathscr{D}(\mathbf{v}) \to \Gamma(\mathrm{TM}):t \mapsto \mathbf{v}(t)$ parameterized by an open interval $\mathscr{D}(\mathbf{v}) \subset \mathbb{R}$, the length $l_{12}$ of a closed section $[t_1, t_2] \subset \mathbb{R}$ of this curve is given by
$$
\begin{align*}
l_{12} &= \int_{t_1}^{t_2} \|\mathbf{\dot v}(t)\| dt, \\
&= \int_{t_1}^{t_2} \sqrt{\bm{g}(\mathbf{\dot v},\mathbf{\dot v})} dt, \\
&= \int_{t_1}^{t_2} \sqrt{g_{ij} \dot v^i \dot v^j} dt,
\end{align*}
$$
with $\mathbf{\dot v} = \dot v^i \partial_i \in \Gamma(\mathrm{TM})$.
> *Definition 2*: the volume $V$ span by the vectors $\{\mathbf{v}_i\}_{i=1}^n$ in $\Gamma(\mathrm{TM})$ is defined by
>
> $$
> V = \bm{\epsilon}(\mathbf{v}_1, \dots, \mathbf{v}_n) = \sqrt{g} \bm{\mu}(\mathbf{v}_1, \dots, \mathbf{v}_n),
> $$
>
> with $\bm{\epsilon}$ the unique unit volume form.
In the context of a subspace $S \subset M$ with $\dim S = k \in \mathbb{N}[k \leq n]$, the volume $V$ is given by
$$
V = \int_S \bm{\epsilon} = \int_S \sqrt{g} dx^1 \dots dx^k.
$$
It follows that for $k=1$
$$
\int_S \bm{\epsilon} = \int_S \sqrt{\bm{g}}.
$$
## Finsler geometry
Will be added later.

View file

@ -124,7 +124,7 @@ One may interpret a geodesic as a generalization of the notion of a straight lin
> *Proposition 2*: let $\gamma: \mathscr{D}(\gamma) \to M: t \mapsto \gamma(t)$ be a smooth curve on the manifold parameterized by an open interval $\mathscr{D}(\gamma) \subset \mathbb{R}$ and let $\mathscr{L}$ be the Lagrangian defined by > *Proposition 2*: let $\gamma: \mathscr{D}(\gamma) \to M: t \mapsto \gamma(t)$ be a smooth curve on the manifold parameterized by an open interval $\mathscr{D}(\gamma) \subset \mathbb{R}$ and let $\mathscr{L}$ be the Lagrangian defined by
> >
> $$ > $$
> \mathscr{L} = \|\dot \gamma\|^2 = g_{ij} \dot \gamma^i \dot \gamma^j, > \mathscr{L} = \|\dot \gamma\|^2,
> $$ > $$
> >
> for all $t \in \mathscr{D}(\gamma)$. By demanding [Hamilton's principle]() we obtain the geodesic equations > for all $t \in \mathscr{D}(\gamma)$. By demanding [Hamilton's principle]() we obtain the geodesic equations

View file

@ -135,11 +135,12 @@ We have from theorem 2 that the outer product of two tensors yields another tens
## Inner product ## Inner product
> *Definition 5*: a **pseudo inner product** on $V$ is a nondegenerate bilinear mapping $\bm{g}: V \times V \to \mathbb{K}$ which satisfies > *Definition 5*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to \mathbb{K}$ which satisfies
> >
> 1. for all $\mathbf{u} \in V \backslash \{\mathbf{0}\} \exists \mathbf{v} \in V: \; \bm{g}(\mathbf{u},\mathbf{v}) \neq 0$, > 1. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u}),$
> 2. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u})$, > 2. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in \mathbb{K}: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}),$
> 3. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in \mathbb{K}: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}).$ > 3. for all $\mathbf{u} \in V\backslash \{\mathbf{0}\}: \bm{g}(\mathbf{u},\mathbf{u}) > 0,$
> 4. for $\mathbf{u} = \mathbf{0} \iff \bm{g}(\mathbf{u},\mathbf{u}) = 0.$
It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existence of an inner product is never implied. It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existence of an inner product is never implied.

View file

@ -102,7 +102,7 @@ for $k \in \mathbb{N}[k < n]$.
> \bm{\epsilon} = \sqrt{g} \bm{\mu}, > \bm{\epsilon} = \sqrt{g} \bm{\mu},
> $$ > $$
> >
> with $g \overset{\text{def}}{=} |\det (G)|$, the absolute value of the determinant of the [Gram matrix](). > with $g \overset{\text{def}}{=} \det (G)$, the determinant of the [Gram matrix]().
Therefore, if we decompose the Levi-Civita tensor by Therefore, if we decompose the Levi-Civita tensor by