Added part of inner product spaces in functional analysis.
This commit is contained in:
parent
116ac7e907
commit
3d3e248463
11 changed files with 369 additions and 9 deletions
|
@ -1,4 +1,4 @@
|
|||
site_name: My notes
|
||||
site_name: Mathematics and physics wiki
|
||||
docs_dir: '../../docs/en'
|
||||
|
||||
theme:
|
||||
|
@ -110,6 +110,18 @@ nav:
|
|||
- 'Compactness': mathematics/functional-analysis/normed-spaces/compactness.md
|
||||
- 'Linear operators': mathematics/functional-analysis/normed-spaces/linear-operators.md
|
||||
- 'Linear functionals': mathematics/functional-analysis/normed-spaces/linear-functionals.md
|
||||
- 'Inner product spaces':
|
||||
- 'Inner product spaces': mathematics/functional-analysis/inner-product-spaces/inner-product-spaces.md
|
||||
- 'Direct sums': mathematics/functional-analysis/inner-product-spaces/direct-sums.md
|
||||
- 'Orthonormal sets': mathematics/functional-analysis/inner-product-spaces/orthonormal-sets.md
|
||||
- 'Total sets': mathematics/functional-analysis/inner-product-spaces/total-sets.md
|
||||
- 'Fourier series':
|
||||
- 'Formalism': mathematics/functional-analysis/inner-product-spaces/fourier-series/formalism.md
|
||||
- 'Convergence': mathematics/functional-analysis/inner-product-spaces/fourier-series/convergence.md
|
||||
- 'Polynomials':
|
||||
- 'Legendre polynomials': mathematics/functional-analysis/inner-product-spaces/polynomials/legendre-polynomials.md
|
||||
- 'Hermite polynomials': mathematics/functional-analysis/inner-product-spaces/polynomials/hermite-polynomials.md
|
||||
- 'Laguerre polynomials': mathematics/functional-analysis/inner-product-spaces/polynomials/laguerre-polynomials.md
|
||||
- 'Topology':
|
||||
- 'Fiber bundles': mathematics/topology/fiber-bundles.md
|
||||
- 'Calculus':
|
||||
|
|
|
@ -0,0 +1,99 @@
|
|||
# Direct sums
|
||||
|
||||
> *Definition 1*: in a metric space $(X,d)$, the **distance** $\delta$ from an element $x \in X$ to a nonempty subset $M \subset X$ is defined as
|
||||
>
|
||||
> $$
|
||||
> \delta = \inf_{\tilde y \in M} d(x,\tilde y).
|
||||
> $$
|
||||
|
||||
In a normed space $(X, \|\cdot\|)$ this becomes
|
||||
|
||||
$$
|
||||
\delta = \inf_{\tilde y \in M} \|x - \tilde y\|.
|
||||
$$
|
||||
|
||||
> *Definition 2*: let $X$ be a vector space and let $x, y \in X$, the **line segment** $l$ between the vectors $x$ and $y$ is defined as
|
||||
>
|
||||
> $$
|
||||
> l = \{z \in X \;|\; \exists \alpha \in [0,1]: z = \alpha x + (1 - \alpha) y\}.
|
||||
> $$
|
||||
|
||||
Using definition 2, we may define the following.
|
||||
|
||||
> *Definition 3*: a subset $M \subset X$ of a vector space $X$ is **convex** if for all $x, y \in M$ the line segment between $x$ and $y$ is contained in $M$.
|
||||
|
||||
This definition is true for projections of convex lenses which have been discussed in [optics]().
|
||||
|
||||
We can now provide the main theorem in this section.
|
||||
|
||||
> *Theorem 1*: let $X$ be an inner product space and let $M \subset X$ be a complete convex subset of $X$. Then for every $x \in X$ there exists a unique $y \in M$ such that
|
||||
>
|
||||
> $$
|
||||
> \delta = \inf_{\tilde y \in M} \|x - \tilde y\| = \|x - y\|,
|
||||
> $$
|
||||
>
|
||||
> if $M$ is a complete subspace $Y$ of $X$, then $x - y$ is orthogonal to $X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Now that the foundation is set, we may introduce direct sums.
|
||||
|
||||
> *Definition 4*: a vector space $X$ is a **direct sum** $X = Y \oplus Z$ of two subspaces $Y \subset X$ and $Z \subset X$ of $X$ if each $x \in X$ has a unique representation
|
||||
>
|
||||
> $$
|
||||
> x = y + z,
|
||||
> $$
|
||||
>
|
||||
> for $y \in Y$ and $z \in Z$.
|
||||
|
||||
Then $Z$ is called an *algebraic complement* of $Y$ in $X$ and vice versa, and $Y$, $Z$ is called a *complementary pair* of subspaces in $X$.
|
||||
|
||||
In the case $Z = \{z \in X \;|\; z \perp Y\}$ we have that $Z$ is the *orthogonal complement* or *annihilator* of $Y$. Also denoted as $Y^\perp$.
|
||||
|
||||
> *Proposition 1*: let $Y \subset X$ be any closed subspace of a Hilbert space $X$, then
|
||||
>
|
||||
> $$
|
||||
> X = Y \oplus Y^\perp,
|
||||
> $$
|
||||
>
|
||||
> with $Y^\perp = \{x\in X \;|\; x \perp Y\}$ the orthogonal complement of $Y$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
We have that $y \in Y$ for $x = y + z$ is called the *orthogonal projection* of $x$ on $Y$. Which defines an operator $P: X \to Y: x \mapsto Px \overset{\mathrm{def}}= y$.
|
||||
|
||||
> *Lemma 1*: let $Y \subset X$ be a subset of a Hilbert space $X$ and let $P: X \to Y$ be the orthogonal projection operator, then we have
|
||||
>
|
||||
> 1. $P$ is a bounded linear operator,
|
||||
> 2. $\|P\| = 1$,
|
||||
> 3. $\mathscr{N}(P) = \{x \in X \;|\; Px = 0\}$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
> *Lemma 2*: if $Y$ is a closed subspace of a Hilbert space $X$, then $Y = Y^{\perp \perp}$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Then it follows that $X = Y^\perp \oplus Y^{\perp \perp}$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
> *Lemma 3*: for every non-empty subset $M \subset X$ of a Hilbert space $X$ we have
|
||||
>
|
||||
> $$
|
||||
> \mathrm{span}(M) \text{ is dense in } X \iff M^\perp = \{0\}.
|
||||
> $$
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
|
@ -0,0 +1,122 @@
|
|||
# Inner product spaces
|
||||
|
||||
> *Definition 1*: a vector space $X$ over a field $F$ is an **inner product space** if an **inner product** $\langle \cdot, \cdot \rangle: X \times X \to F$ is defined on $X$ satisfying
|
||||
>
|
||||
> 1. $\forall x \in X: \langle x, x \rangle \geq 0$,
|
||||
> 2. $\langle x, x \rangle = 0 \iff x = 0$,
|
||||
> 3. $\forall x, y \in X: \langle x, y \rangle = \overline{\langle y, x \rangle}$,
|
||||
> 4. $\forall x, y \in X, \alpha \in F: \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$,
|
||||
> 5. $\forall x, y, z \in X: \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
|
||||
|
||||
Similar to the case in normed spaces we have the following proposition.
|
||||
|
||||
> *Proposition 1*: an inner product $\langle \cdot, \cdot \rangle$ on a vector space $X$ defines a norm $\|\cdot\|$ on $X$ given by
|
||||
>
|
||||
> $$
|
||||
> \|x\| = \sqrt{\langle x, x \rangle},
|
||||
> $$
|
||||
>
|
||||
> for all $x \in X$ and is called the **norm induced by the inner product**.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Which makes an inner product space also a normed space as well as a metric space, referring to proposition 1 in normed spaces.
|
||||
|
||||
> *Definition 2*: a **Hilbert space** $H$ is a complete inner product space with its metric induced by the inner product.
|
||||
|
||||
Definition 2 makes a Hilbert space also a Banach space, using proposition 1.
|
||||
|
||||
## Properties of inner product spaces
|
||||
|
||||
> *Proposition 2*: let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space, then
|
||||
>
|
||||
> $$
|
||||
> \| x + y \|^2 + \| x - y \|^2 = 2\big(\|x\|^2 + \|y\|^2\big),
|
||||
> $$
|
||||
>
|
||||
> for all $x, y \in X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Proposition 2 is also called the parallelogram identity.
|
||||
|
||||
> *Lemma 1*: let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space, then
|
||||
>
|
||||
> 1. $\forall x, y \in X: |\langle x, y \rangle| \leq \|x\| \cdot \|y\|$,
|
||||
> 2. $\forall x, y \in X: \|x + y\| \leq \|x\| + \|y\|$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Statement 1 in lemma 1 is known as the Schwarz inequality and statement 2 is known as the triangle inequality and will be used throughout the section of inner product spaces.
|
||||
|
||||
> *Lemma 2*: let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space and let $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ be sequences in $X$, if we have $x_n \to x$ and $y_n \to y$ as $n \to \infty$, then
|
||||
>
|
||||
> $$
|
||||
> \lim_{n \to \infty} \langle x_n, y_n \rangle = \langle x, y \rangle.
|
||||
> $$
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
## Completion
|
||||
|
||||
> *Definition 3*: an **isomorphism** $T$ of an inner product space $(X, \langle \cdot, \cdot \rangle)_X$ onto an inner product space $(\tilde X, \langle \cdot, \cdot \rangle)_{\tilde X}$ over the same field $F$ is a bijective linear operator $T: X \to \tilde X$ which preserves the inner product
|
||||
>
|
||||
> $$
|
||||
> \langle Tx, Ty \rangle_{\tilde X} = \langle x, y \rangle_X,
|
||||
> $$
|
||||
>
|
||||
> for all $x, y \in X$.
|
||||
|
||||
As a first application of lemma 2, let us prove the following.
|
||||
|
||||
> *Theorem 1*: for every inner product space $(X, \langle \cdot, \cdot \rangle)_X$ there exists a Hilbert space $(\tilde X, \langle \cdot, \cdot \rangle)_{\tilde X}$ that contains a subspace $W$ that satisfies the following conditions
|
||||
>
|
||||
> 1. $W$ is an inner product space isomorphic with $X$.
|
||||
> 2. $W$ is dense in $X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Somewhat trivially, we have that a subspace $M$ of an inner product space $X$ is defined to be a vector subspace of $X$ taken with the inner product on $X$ restricted to $M \times M$.
|
||||
|
||||
> *Proposition 3*: let $Y$ be a subspace of a Hilbert space $X$, then
|
||||
>
|
||||
> 1. $Y$ is complete $\iff$ $Y$ is closed in $X$,
|
||||
> 2. if $Y$ is finite-dimensional, then $Y$ is complete,
|
||||
> 3. $Y$ is separable if $X$ is separable.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
## Orthogonality
|
||||
|
||||
> *Definition 4*: let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space, a vector $x \in X$ is **orthogonal** to a vector $y \in X$ if
|
||||
>
|
||||
> $$
|
||||
> \langle x, y \rangle = 0,
|
||||
> $$
|
||||
>
|
||||
> and we write $x \perp y$.
|
||||
|
||||
Furthermore, we can also say that $x$ and $y$ *are orthogonal*.
|
||||
|
||||
> *Definition 5*: let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space and let $A, B \subset X$ be subspaces of $X$. Then $A$ is **orthogonal** to $B$ if for every $x \in A$ and $y \in B$ we have
|
||||
>
|
||||
> $$
|
||||
> \langle x, y \rangle = 0,
|
||||
> $$
|
||||
>
|
||||
> and we write $A \perp B$.
|
||||
|
||||
Similarly, we may state that $A$ and $B$ *are orthogonal*.
|
||||
|
|
@ -0,0 +1,65 @@
|
|||
# Orthonormal sets
|
||||
|
||||
> *Definition 1*: an **orthogonal set** $M$ in an inner product space $X$ is a subset $M \subset X$ whose elements are pairwise orthogonal.
|
||||
|
||||
Pairwise orthogonality implies that $x, y \in M: x \neq y \implies \langle x, y \rangle = 0$.
|
||||
|
||||
> *Definition 2*: an **orthonormal set** $M$ in an inner product space $X$ is an orthogonal set in $X$ whose elements have norm 1.
|
||||
|
||||
That is for all $x, y \in M$:
|
||||
|
||||
$$
|
||||
\langle x, y \rangle = \begin{cases}0 &\text{if } x \neq y, \\ 1 &\text{if } x = y.\end{cases}
|
||||
$$
|
||||
|
||||
> *Lemma 1*: an orthonormal set is linearly independent.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
In the case that an orthogonal or orthonormal set is countable it can be arranged in a sequence and call it can be called an *orthogonal* or *orthonormal sequence*.
|
||||
|
||||
> *Theorem 1*: let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal sequence in an inner product space $(X, \langle \cdot, \cdot \rangle)$, then
|
||||
>
|
||||
> $$
|
||||
> \sum_{n=1}^\infty |\langle x, e_n \rangle|^2 \leq \|x\|^2,
|
||||
> $$
|
||||
>
|
||||
> for all $x \in X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Theorem 1 is known as the Bessel inequality, and we have that $|\langle x, e_n \rangle|$ are called the Fourier coefficients of $x$ with respect to the orthonormal sequence $(e_n)_{n \in \mathbb{N}}$.
|
||||
|
||||
## Orthonormalisation process
|
||||
|
||||
Let $(x_n)_{n \in \mathbb{N}}$ be a linearly independent sequence in an inner product space $(X, \langle \cdot, \cdot \rangle)$, then we can use the **Gram-Schmidt process** to determine the corresponding orthonormal sequence $(e_n)_{n \in \mathbb{N}}$.
|
||||
|
||||
Let $e_1 = \frac{1}{\|x_1\|} x_1$ be the first step and let $e_n = \frac{1}{\|v_n\|} v_n$ be the $n$th step with
|
||||
|
||||
$$
|
||||
v_n = x_n - \sum_{k=1}^{n-1} \langle x_n, e_k \rangle e_k.
|
||||
$$
|
||||
|
||||
## Properties
|
||||
|
||||
> *Proposition 1*: let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal sequence in a Hilbert space $(X, \langle \cdot, \cdot \rangle)$ and let $(\alpha_n)_{n \in \mathbb{N}}$ be a sequence in the field of $X$, then
|
||||
>
|
||||
> 1. the series $\sum_{n=1}^\infty \alpha_n e_n$ is convergent in $X$ $\iff$ $\sum_{n=1}^\infty | \alpha_n|^2$ is convergent in $X$.
|
||||
> 2. if the series $\sum_{n=1}^\infty \alpha_n e_n$ is convergent in $X$ and $s = \sum_{n=1}^\infty \alpha_n e_n$ then $a_n = \langle s, e_n \rangle$.
|
||||
> 3. the series $\sum_{n=1}^\infty \alpha_n e_n = \sum_{n=1}^\infty \langle s, e_n \rangle e_n$ is convergent in $X$ for all $x \in X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Furthermore, we also have that.
|
||||
|
||||
> *Proposition 2*: let $M$ be an orthonormal set in an inner product space $(X, \langle \cdot, \cdot \rangle)$, then any $x \in X$ can have at most countably many nonzero Fourier coefficients $\langle x, e_k \rangle$ for $e_k \in M$ over the uncountable index set $k \in I$ of $M$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
|
@ -0,0 +1,58 @@
|
|||
# Total sets
|
||||
|
||||
> *Definition 1*: a **total set** in a normed space $(X, \langle \cdot, \cdot \rangle)$ is a subset $M \subset X$ whose span is dense in $X$.
|
||||
|
||||
Accordingly, an orthonormal set in $X$ which is total in $X$ is called a total orthonormal set in $X$.
|
||||
|
||||
> *Proposition 1*: let $M \subset X$ be a subset of an inner product space $(X, \langle \cdot, \cdot \rangle)$, then
|
||||
>
|
||||
> 1. if $M$ is total in $X$, then $M^\perp = \{0\}$.
|
||||
> 2. if $X$ is complete and $M^\perp = \{0\}$ then $M$ is total in $X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
## Total orthornormal sets
|
||||
|
||||
> *Theorem 1*: an orthonormal sequence $(e_n)_{n \in \mathbb{N}}$ in a Hilbert space $(X, \langle \cdot, \cdot \rangle)$ is total in $X$ if and only if
|
||||
>
|
||||
> $$
|
||||
> \sum_{n=1}^\infty |\langle x, e_n \rangle|^2 = \|x\|^2,
|
||||
> $$
|
||||
>
|
||||
> for all $x \in X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
> *Lemma 1*: in every non-empty Hilbert space there exists a total orthonormal set.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
> *Theorem 2*: all total orthonormal sets in a Hilbert space have the same cardinality.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
This cardinality is called the Hilbert dimension or the orthogonal dimension of the Hilbert space.
|
||||
|
||||
> *Theorem 3*: let $X$ be a Hilbert space, then
|
||||
>
|
||||
> 1. if $X$ is separable, every orthonormal set in $X$ is countable.
|
||||
> 2. if $X$ contains a countable total orthonormal set, then $X$ is separable.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
> *Theorem 4*: two Hilbert spaces $X$ and $\tilde X$ over the same field are isomorphic if and only if they have the same Hilbert dimension.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
|
@ -9,7 +9,7 @@
|
|||
|
||||
Also called a *normed vector space* or *normed linear space*.
|
||||
|
||||
> *Definition 2*: a norm on a vector space $X$ defines a metric $d$ on $X$ given by
|
||||
> *Proposition 1*: a norm on a vector space $X$ defines a metric $d$ on $X$ given by
|
||||
>
|
||||
> $$
|
||||
> d(x,y) = \|x - y\|,
|
||||
|
@ -17,9 +17,13 @@ Also called a *normed vector space* or *normed linear space*.
|
|||
>
|
||||
> for all $x, y \in X$ and is called a **metric induced by the norm**.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
Furthermore, there is a category of normed spaces with interesting properties which is given in the following definition.
|
||||
|
||||
> *Definition 3*: a **Banach space** is a complete normed space with its metric induced by the norm.
|
||||
> *Definition 2*: a **Banach space** is a complete normed space with its metric induced by the norm.
|
||||
|
||||
If we define the norm $\| \cdot \|$ of the Euclidean vector space $\mathbb{R}^n$ by
|
||||
|
||||
|
@ -58,7 +62,7 @@ This adaptation also works for $C$, $l^p$ and $l^\infty$, obviously. Obtaining t
|
|||
|
||||
By definition, a subspace $M$ of a normed space $X$ is a subspace of $X$ with its norm induced by the norm on $X$.
|
||||
|
||||
> *Definition 4*: let $M$ be a subspace of a normed space $X$, if $M$ is closed then $M$ is a **closed subspace** of $X$.
|
||||
> *Definition 3*: let $M$ be a subspace of a normed space $X$, if $M$ is closed then $M$ is a **closed subspace** of $X$.
|
||||
|
||||
By definition, a subspace $M$ of a Banach space $X$ is a subspace of $X$ as a normed space. Hence, we do not require $M$ to be complete.
|
||||
|
||||
|
@ -72,7 +76,7 @@ Convergence in normed spaces follows from the definition of convergence in metri
|
|||
|
||||
## Convergent series
|
||||
|
||||
> *Definition 5*: let $(x_k)_{k \in \mathbb{N}}$ be a sequence in a normed space $(X, \|\cdot\|)$. We define the sequence of partial sums $(s_n)_{n \in \mathbb{N}}$ by
|
||||
> *Definition 4*: let $(x_k)_{k \in \mathbb{N}}$ be a sequence in a normed space $(X, \|\cdot\|)$. We define the sequence of partial sums $(s_n)_{n \in \mathbb{N}}$ by
|
||||
>
|
||||
> $$
|
||||
> s_n = \sum_{k=1}^n x_k,
|
||||
|
@ -108,7 +112,7 @@ From the notion of absolute convergence the following theorem may be posed.
|
|||
|
||||
## Schauder basis
|
||||
|
||||
> *Definition 6*: let $(X, \|\cdot\|)$ be a normed space and let $(e_k)_{k \in \mathbb{N}}$ be a sequence of vectors in $X$, such that for every $x \in X$ there exists a unique sequence of scalars $(\alpha_k)_{k \in \mathbb{N}}$ such that
|
||||
> *Definition 5*: let $(X, \|\cdot\|)$ be a normed space and let $(e_k)_{k \in \mathbb{N}}$ be a sequence of vectors in $X$, such that for every $x \in X$ there exists a unique sequence of scalars $(\alpha_k)_{k \in \mathbb{N}}$ such that
|
||||
>
|
||||
> $$
|
||||
> \lim_{n \to \infty} \|x - \sum_{k=1}^n \alpha_k e_k\| = 0,
|
||||
|
@ -165,7 +169,7 @@ As a first application of this lemma, let us prove the following.
|
|||
|
||||
In particular, every finite dimensional normed space is complete.
|
||||
|
||||
> *Proposition 1*: every finite-dimensional subspace $M$ of a normed space $(X, \|\cdot\|)$ is a closed subspace of $X$.
|
||||
> *Proposition 2*: every finite-dimensional subspace $M$ of a normed space $(X, \|\cdot\|)$ is a closed subspace of $X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
|
@ -173,7 +177,7 @@ In particular, every finite dimensional normed space is complete.
|
|||
|
||||
Another interesting property of finite-dimensional vector space $X$ is that all norms on $X$ lead to the same topology for $X$. That is, the open subsets of $X$ are the same, regardless of the particular choice of a norm on $X$. The details are as follows.
|
||||
|
||||
> *Definition 7*: a norm $\|\cdot\|_1$ on a vector space $X$ is **equivalent** to a norm $\|\cdot\|_2$ on $X$ if there exists $a,b>0$ such that
|
||||
> *Definition 6*: a norm $\|\cdot\|_1$ on a vector space $X$ is **equivalent** to a norm $\|\cdot\|_2$ on $X$ if there exists $a,b>0$ such that
|
||||
>
|
||||
> $$
|
||||
> \forall x \in X: a \|x\|_1 \leq \|x\|_2 \leq b \|x\|_1.
|
||||
|
@ -181,7 +185,7 @@ Another interesting property of finite-dimensional vector space $X$ is that all
|
|||
|
||||
This concept is motivated by the following proposition.
|
||||
|
||||
> *Proposition 2*: equivalent norms on $X$ define the same topology for $X$.
|
||||
> *Proposition 3*: equivalent norms on $X$ define the same topology for $X$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
|
|
Loading…
Reference in a new issue