1
0
Fork 0

Added eigenspaces and thereby finished linear algebra.

This commit is contained in:
Luc Bijl 2024-04-23 19:29:52 +02:00
parent 2d4cc90f36
commit 8198f285b2
4 changed files with 284 additions and 4 deletions

View file

@ -90,7 +90,7 @@ nav:
- 'Linear transformations': mathematics/linear-algebra/linear-transformations.md
- 'Inner product spaces': mathematics/linear-algebra/inner-product-spaces.md
- 'Orthogonality': mathematics/linear-algebra/orthogonality.md
- 'Diagonalization': mathematics/linear-algebra/diagonalization.md
- 'Eigenspaces': mathematics/linear-algebra/eigenspaces.md
- 'Calculus':
- 'Limits': mathematics/calculus/limits.md
- 'Continuity': mathematics/calculus/continuity.md

View file

@ -1 +0,0 @@
# Diagonalization

View file

@ -0,0 +1,267 @@
# Eigenspaces
## Eigenvalues and eigenvectors
If a linear transformation is represented by an $n \times n$ matrix $A$ and there exists a nonzero vector $\mathbf{x} \in V$ such that $A \mathbf{x} = \lambda \mathbf{x}$ for some $\lambda \in \mathbb{K}$, then for this transformation $\mathbf{x}$ is a natural choice to use as a basis vector for $V$.
> *Definition 1*: let $A$ be a $n \times n$ matrix, a scalar $\lambda \in \mathbb{K}$ is defined as an **eigenvalue** of $A$ if and only if there exists a vector $\mathbf{x} \in V \backslash \{\mathbf{0}\}$ such that
>
> $$
> A \mathbf{x} = \lambda \mathbf{x},
> $$
>
> with $\mathbf{x}$ defined as an **eigenvector** belonging to $\lambda$.
This notion can be further generalized to a linear operator $L: V \to V$ such that
$$
L(\mathbf{x}) = \lambda \mathbf{x},
$$
note that $L(\mathbf{x}) = A \mathbf{x}$, which implies the similarity.
Furthermore it follows from the definition that any linear combination of eigenvectors is also a eigenvector of $A$.
> *Theorem 1*: let $A$ be a $n \times n$ matrix, a scalar $\lambda \in \mathbb{K}$ is an eigenvalue of $A$ if and only if
>
> $$
> \det (A - \lambda I) = 0.
> $$
??? note "*Proof*:"
A scalar $\lambda \in \mathbb{K}$ is an eigenvalue of $A$ if and only if there exists a vector $\mathbf{x} \in V \backslash \{\mathbf{0}\}$ such that
$$
A \mathbf{x} = \lambda \mathbf{x},
$$
obtains
$$
A \mathbf{x} - \lambda \mathbf{x} = (A - \lambda I) \mathbf{x} = \mathbf{0},
$$
which implies that $(A - \lambda I)$ is singular and $\det(A - \lambda I) = 0$ by [definition](..//determinants/#properties-of-determinants).
The eigenvalues $\lambda$ may thus be determined from the **characteristic polynomial** of degree $n$ that is obtained from $\det (A - \lambda I) = 0$. In particular, the eigenvalues are the roots of this polynomial.
> *Theorem 2*: let $A$ be a $n \times n$ matrix and let $\lambda \in \mathbb{K}$ be an eigenvalue of $A$. A vector $\mathbf{x} \in V$ is an eigenvector of $A$ corresponding to $\lambda$ if and only if
>
> $$
> \mathbf{x} \in N(A - \lambda I) \backslash \{\mathbf{0}\}.
> $$
??? note "*Proof*:"
Let $A$ be a $n \times n$ matrix, $\mathbf{x} \in V$ is an eigenvector of $A$ if and only if
$$
A \mathbf{x} = \lambda \mathbf{x},
$$
for an eigenvalue $\lambda \in \mathbb{K}$. Therefore
$$
A \mathbf{x} - \lambda \mathbf{x} = (A - \lambda I) \mathbf{x} = \mathbf{0},
$$
which implies that $\mathbf{x} \in N(A - \lambda I)$.
Which implies that the eigenvectors can be obtained by determining the corresponding null space of $A - \lambda I$.
> *Definition 2*: let $L: V \to V$ be a linear operator and let $\lambda \in \mathbb{K}$ be an eigenvalue of $L$. Let the **eigenspace** $E_\lambda$ of the corresponding eigenvalue $\lambda$ be defined as
>
> $$
> E_\lambda = \{\mathbf{x} \in V \;|\; L(\mathbf{x}) = \lambda \mathbf{x}\} = N(A - \lambda I),
> $$
>
> with $L(\mathbf{x}) = A \mathbf{x}$.
It may be observed that $E_\lambda$ is a subspace of $V$ consisting of the zero vector and the eigenvectors of $L$ or $A.$
### Properties
> *Theorem 3*: if $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ are distinct eigenvalues of an $n \times n$ matrix $A$ with corresponding eigenvectors $\mathbf{x}_1, \dots \mathbf{x}_k \in V\backslash \{\mathbf{0}\}$, then $\mathbf{x}_1, \dots \mathbf{x}_k$ are linearly independent.
??? note "*Proof*:"
Will be added later.
If $A \in \mathbb{R}^{n \times n}$ and $A \mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \in V$ and $\lambda \in \mathbb{K}$. Then
$$
A \mathbf{\bar x} = \overline{A \mathbf{x}} = \overline{\lambda \mathbf{x}} = \bar \lambda \mathbf{\bar x}.
$$
The complex conjugate of an eigenvector of $A$ is also an eigenvector of $A$ with an eigenvalue $\bar \lambda$.
> *Theorem 4*: let $A$ be a $n \times n$ matrix and let $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ be the eigenvalues of $A$. It follows that
>
> $$
> \det (A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda),
> $$
>
> and
>
> $$
> \det (A) = \lambda_1 \lambda_2 \cdots \lambda_n.
> $$
??? note "*Proof*:"
Let $A$ be a $n \times n$ matrix and let $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ be the eigenvalues of $A$. It follows from the [fundamental theorem of algebra](../../number-theory/complex-numbers/#roots-of-polynomials) that
$$
\det (A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda),
$$
by taking $\lambda = 0$ it follows that
$$
\det (A) = \lambda_1 \lambda_2 \cdots \lambda_n.
$$
From $\det (A) = \lambda_1 \lambda_2 \cdots \lambda_n$ it must follow that
$$
\mathrm{trace}(A) = \sum_{i=1}^n \lambda_i.
$$
> *Theorem 5*: let $A$ and $B$ be $n \times n$ matrices. If $B$ is similar to $A$, then $A$ and $B$ have the same eigenvalues.
??? note "*Proof*:"
Let $A$ and $B$ be similar $n \times n$ matrices, then there exists a nonsingular matrix $S$ such that
$$
B = S^{-1} A S.
$$
Let $\lambda \in \mathbb{K}$ be an eigenvalue of $B$ then
$$
\begin{align*}
0 &= \det(B - \lambda I), \\
&= \det(S^{-1} A S - \lambda I), \\
&= \det(S^{-1}(A - \lambda I) S), \\
&= \det(S^{-1}) \det(A - \lambda I) \det(S), \\
&= \det(A - \lambda I).
\end{align*}
$$
## Diagonalization
> *Definition 3*: an $n \times n$ matrix $A$ is **diagonalizable** if there exists a nonsingular diagonalizing matrix $X$ and a diagonal matrix $D$ such that
>
> $$
> A X = X D.
> $$
We may now pose the following theorem.
> *Theorem 6*: an $n \times n$ matrix $A$ is diagonalizable if and only if $A$ has $n \in \mathbb{N}$ linearly independent eigenvectors.
??? note "*Proof*:"
Will be added later.
It follows from the proof that the column vectors of the diagonalizing matrix $X$ are eigenvectors of $A$ and the diagonal elements of $D$ are the corresponding eigenvalues of $A$. If $A$ is diagonalizable, then
$$
A = X D X^{-1},
$$
it follows then that
$$
A^k = X D^k X^{-1},
$$
for $k \in \mathbb{K}$.
### Hermitian case
The following section is for the special case that a matrix is [Hermitian](../matrices/matrix-arithmatic/#hermitian-matrix).
> *Theorem 7*: the eigenvalues of a Hermitian matrix are real.
??? note "*Proof*:"
Let $A$ be a Hermitian matrix and let $\mathbf{x} \in V \backslash \{\mathbf{0}\}$ be an eigenvector of $A$ with corresponding eigenvalue $\lambda \in \mathbb{C}$. We have
$$
\begin{align*}
\lambda \mathbf{x}^H \mathbf{x} &= \mathbf{x}^H (\lambda \mathbf{x}), \\
&= \mathbf{x}^H (A \mathbf{x}), \\
&= (\mathbf{x}^H A) \mathbf{x}, \\
&= (A^H \mathbf{x})^H \mathbf{x} , \\
&= (A \mathbf{x})^H \mathbf{x}, \\
&= (\lambda \mathbf{x})^H \mathbf{x}, \\
&= \bar \lambda \mathbf{x}^H \mathbf{x},
\end{align*}
$$
since $\bar \lambda = \lambda$ we must have that $\lambda \in \mathbb{R}$.
> *Theorem 8*: the eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues are orthogonal.
??? note "*Proof*:"
Let $A$ be a Hermitian matrix and let $\mathbf{x}_1, \mathbf{x}_2 \in V \backslash \{\mathbf{0}\}$ be two eigenvectors of $A$ with corresponding eigenvalues $\lambda_1, \lambda_2 \in \mathbb{C}[\lambda_1 \neq \lambda_2]$. We have
$$
\begin{align*}
\lambda_1 \mathbf{x}_1^H \mathbf{x}_2 &= (\lambda_1 \mathbf{x}_1)^H \mathbf{x}_2, \\
&= (A \mathbf{x}_1)^H \mathbf{x}_2, \\
&= \mathbf{x}_1^H A^H \mathbf{x}_2, \\
&= \mathbf{x}_1^H A \mathbf{x}_2, \\
&= \mathbf{x}_1^H (\lambda_2 \mathbf{x}_2), \\
&= \lambda_2 \mathbf{x}_1^H \mathbf{x}_2,
\end{align*}
$$
since $\lambda_1 \neq \lambda_2$ this must imply that $\mathbf{x}_1^H \mathbf{x}_2 = 0$, implying orthogonality in terms of the Hermite scalar product.
Theorem 7 and 8 impose that the following definition can be used.
> *Definition 4*: an $n \times n$ matrix $U$ is **unitary** if the column vectors of $U$ form an orthonormal set in $V$.
Thus, $U$ is unitary if and only if $U^H U = I$. Then it also follows that $U^{-1} = U^H$. A real unitary matrix is an orthogonal matrix.
One may observe that theorem 8 implies that the diagonalizing matrix of a Hermitian matrix $A$ is unitary when $A$ has distinct eigenvalues.
> *Lemma 1*: if the eigenvalues of a Hermitian matrix $A$ are distinct, then there exists a unitary matrix $U$ and a diagonal matrix $D$ such that
>
> $$
> A U = U D.
> $$
??? note "*Proof*:"
Will be added later.
With the column vectors of $U$ the eigenvectors of $A$ and the diagonal elements of $D$ the corresponding eigenvalues of $A$.
> *Theorem 9*: let $A$ be an $n \times n$ matrix, there exists a unitary matrix $U$ and a upper triangular matrix $T$ such that
>
> $$
> A U = U T.
> $$
??? note "*Proof*:"
Will be added later.
The factorization $A = U T U^H$ is often referred to as the *Schur decomposition* of $A$.
> *Theorem 10*: if $A$ is Hermitian, then there exists a unitary matrix $U$ and a diagonal matrix $D$ such that
>
> $$
> A U = U D.
> $$
??? note "*Proof*:"
Will be added later.

View file

@ -70,10 +70,10 @@ with $A = (\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n})$.
## Transpose matrix
> *Definition*: the transpose of an $m \times n$ matrix A is the $n \times m$ matrix $B$ defined by
> *Definition*: the **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix $B$ defined by
>
> $$
> b_{ji} = a_{ij}
> b_{ji} = a_{ij},
> $$
>
> for $j \in \{1, \dots, n\}$ and $i \in \{1, \dots m\}$. The transpose of $A$ is denoted by $A^T$.
@ -82,6 +82,20 @@ with $A = (\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n})$.
> *Definition*: an $n \times n$ matrix $A$ is said to be **symmetric** if $A^T = A$.
## Hermitian matrix
> *Definition*: the **conjugate transpose** of an $m \times n$ matrix A is the $n \times m$ matrix $B$ defined by
>
> $$
> b_{ji} = \bar a_{ij},
> $$
>
> for $j \in \{1, \dots, n\}$ and $i \in \{1, \dots m\}$. The **conjugate transpose** of $A$ is denoted by $A^H$.
<br>
> *Definition*: an $n \times n$ matrix $A$ is said to be **Hermitian** if $A^H = A$.
## Matrix multiplication
> *Definition*: if $A = (a_{ij})$ is an $m \times n$ matrix and $B = (b_{ij})$ is an $n \times r$ matrix, then the product $A B = C = (c_{ij})$ is the $m \times r$ matrix whose entries are defined by