diff --git a/config/en/mkdocs.yaml b/config/en/mkdocs.yaml index 76728bf..2671f32 100755 --- a/config/en/mkdocs.yaml +++ b/config/en/mkdocs.yaml @@ -127,7 +127,7 @@ nav: - 'Geometric optics': physics/electromagnetism/optics/geometric-optics.md - 'Interference': physics/electromagnetism/optics/interference.md - 'Diffraction': physics/electromagnetism/optics/diffraction.md - - 'Polarization': physics/electromagnetism/optics/polarization.md + - 'Polarisation': physics/electromagnetism/optics/polarisation.md - 'Mathematical physics': - 'Signal analysis': - 'Signals': physics/mathematical-physics/signal-analysis/signals.md diff --git a/docs/en/physics/electromagnetism/optics/polarisation.md b/docs/en/physics/electromagnetism/optics/polarisation.md new file mode 100644 index 0000000..9ebb53e --- /dev/null +++ b/docs/en/physics/electromagnetism/optics/polarisation.md @@ -0,0 +1,179 @@ +# Polarisation + +If we consider an electromagnetic wave $\mathbf{E}: \mathbb{R}^2 \to \mathbb{R}^3$ with wavenumber $k \in \mathbb{R}$ and angular frequency $\omega \in \mathbb{R}$ propagating in the positve $z$-direction given by + +$$ + \mathbf{E}(z,t) = \exp i(kz - \omega t + \varphi_1) E_0^{(x)} \mathbf{e}_{(x)} + \exp i(kz - \omega t + \varphi_2) E_0^{(y)}\mathbf{e}_{(y)}, +$$ + +for all $(z,t) \in \mathbb{R}^2$ with $E_0^{(x)}, E_0^{(y)} \in \mathbb{R}$ the magnitude of the wave in the $x$ and $y$ direction. We define $\Delta \varphi = \varphi_2 - \varphi_1$. + +> *Definition*: the electromagnetic wave $\mathbf{E}$ is linear polarised if and only if +> +> $$ +> \Delta \varphi = \pi m, +> $$ +> +> for all $m \in \mathbb{Z}$. + +With polarisation angle $\theta \in [0, 2\pi)$ given by + +$$ + \theta = \arctan \Bigg( \frac{\max E_0^{(y)}}{\max E_0^{(x)}} \Bigg). +$$ + +??? note "*Proof*:" + + Will be added later. + +> *Definition*: the electromagnetic wave $\mathbf{E}$ is left circular polarised if and only if +> +> $$ +> \Delta \varphi = \frac{\pi}{2} \;\land\; E_0^{(x)} = E_0^{(y)}, +> $$ +> +> and right circular polarised if and only if +> +> $$ +> \Delta \varphi = -\frac{\pi}{2} \;\land\; E_0^{(x)} = E_0^{(y)}. +> $$ + +For every state in between we have elliptical polarisation with a polarisation angle $\theta \in [0, 2\pi)$ given by + +$$ + \theta = \frac{1}{2} \arctan \Bigg(\frac{2 E_0^{(x)} E_0^{(y)} \cos \Delta\varphi}{ \big(E_0^{(x)} \big)^2- \big( E_0^{(y)} \big)^2} \Bigg). +$$ + +??? note "*Proof*:" + + Will be added later. + +> *Definition*: natural light is defined as light constisting of all linear polarisation states. + +## Linear polarisation + +> *Definition*: a linear polariser selectively removes light that is linearly polarised along a direction perpendicular to its transmission axis. + +We may concretisize this definition by the following statement, considered to be Malus law. + +> *Law*: for a light beam with amplitude $E_0$ incident on a linear polariser the transmitted beam has amplitude $E_0 \cos \theta$ with $\theta \in [0, 2\pi)$ the polarisation angle of the light with respect to the transmission axis. The transmitted irradiance $I: [0, 2\pi) \to \mathbb{R}$ is then given by +> +> $$ +> I(\theta) = I_0 \cos^2 \theta, +> $$ +> +> for all $\theta \in [0, 2\pi)$ with $I_0 \in \mathbb{R}$ the irradiance of the incident light. + +??? note "*Proof*:" + + Will be added later. + +For natural light the average of all angles must be taken, since $\lim_{\theta \to \infty} \cos^2 \theta = \frac{1}{2}$, we have the relation $I = \frac{1}{2} I_0$ for natural light. + +## Birefringence + +Natural light can be polarised in several ways, some are listed below. + +1. Polarisation by absorption of the other component. This can be done with a wiregrid or dichroic materials for smaller wavelengths. +2. Polarisation by scattering. Dipole radiation has distinct polarisation depending on the position. +3. Polarisation by Brewster angle, which boils down to scattering. +4. Polarisation by birefringence, the double refraction of light obtaining two orthogonal components polarised. + +??? note "*Proof*:" + + Will be added later. + +> *Definition*: birefringence is a double refraction in a material (often crystalline) and can be derived from the Fresnel equations without assuming isotropic dielectric properties. + +If isotropic dielectric properties are not assumed it implies that the refractive index may also depend on the polarisation and propgation direction of light. + +Using the properties of birefringence, wave plates (retarders) can be created. They may introduce a phase difference via a speed difference in the polarisation direction. + +* A half-wave plate may introduce a $\Delta \varphi = \pi$ phase difference. +* A quarter-wave plate may introduce a $\Delta \varphi = \frac{\pi}{2}$ phase difference. + +## Jones formalism of polarisation + +Jones formalism of polarisation with vectors and matrices cna make it easier to calculate the effect of optical elements such as linear polarizers and wave plates. + +> *Definition*: for an electromagnetic wave $\mathbf{E}: \mathbb{R}^2 \to \mathbb{R}^3$ with wavenumber $k \in \mathbb{R}$ and angular frequency $\omega \in \mathbb{R}$ propagating in the positive $z$-direction given by +> +> $$ +> \mathbf{E}(z,t) = \mathbf{E}_0 \exp i(kz - \omega t), +> $$ +> +> for all $(z,t) \in \mathbb{R}^2$. The Jones vector $\mathbf{\tilde E}$ is defined as +> +> $$ +> \mathbf{\tilde E} = \mathbf{E}_0, +> $$ +> +> possibly normalized with $\|\mathbf{\tilde E}\| = 1$. + +For linear polarised light under an angle $\theta \in [0, 2\pi)$ the Jones vector $\mathbf{\tilde E}$ is given by + +$$ + \mathbf{\tilde E} = \begin{pmatrix}\cos \theta \\ \sin \theta\end{pmatrix}. +$$ + +For left circular polarised light the Jones vector $\mathbf{\tilde E}$ is given by + +$$ + \mathbf{\tilde E} = \begin{pmatrix} 1 \\ i \end{pmatrix}, +$$ + +and for right circular polarised light + +$$ + \mathbf{\tilde E} = \begin{pmatrix} 1 \\ -i \end{pmatrix}. +$$ + +> *Definition*: Jones matrices $M_i$ with $i \in \{1, \dots, n\}$ with $n \in \mathbb{N}$ may be used to model several optical elements on an optical axis, obtaining the transmitted Jones vector $\mathbf{\tilde E}_t$ from the incident Jones vector $\mathbf{\tilde E}_i$ given by +> +> $$ +> \mathbf{\tilde E}_t = M_n \cdots M_1 \mathbf{\tilde E}_i. +> $$ + +The Jones matrices for several optical elements are now given. + +> *Proposition*: the Jones matrix $M$ of a linear polariser is given by +> +> $$ +> M = \begin{pmatrix} \cos^2 \theta & \frac{1}{2} \sin 2\theta \\ \frac{1}{2} \sin 2\theta & \sin^2 \theta \end{pmatrix}, +> $$ +> +> with $\theta \in [0, 2\pi)$ the transmission axis of the linear polariser. + +??? note "*Proof*:" + + Will be added later. + +
+ +> *Proposition*: the Jones matrix $M$ of a half-wave plate is given by +> +> $$ +> M = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}, +> $$ +> +> with $\theta \in [0, 2\pi)$ the fast axis of the half-wave plate. + +??? note "*Proof*:" + + Will be added later. + +
+ +> *Proposition*: the Jones matrix $M$ of a quarter-wave plate is given by +> +> $$ +> M = \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & (1 - i) \sin \theta \cos \theta \\ (1 - i) \sin \theta \cos \theta & i(\cos^2 \theta + \sin^2 \theta) \end{pmatrix}, +> $$ +> +> with $\theta \in [0, 2\pi)$ the fast axis of the quarter-wave plate. + +??? note "*Proof*:" + + Will be added later. + +
\ No newline at end of file diff --git a/docs/en/physics/electromagnetism/optics/polarization.md b/docs/en/physics/electromagnetism/optics/polarization.md deleted file mode 100644 index 74a3b3c..0000000 --- a/docs/en/physics/electromagnetism/optics/polarization.md +++ /dev/null @@ -1 +0,0 @@ -# Polarization \ No newline at end of file