From b35439f3b658907df36952abcbc3d1806818169b Mon Sep 17 00:00:00 2001 From: Luc Date: Thu, 25 Jan 2024 16:32:29 +0100 Subject: [PATCH] Finished curl section in vector analysis. --- .../vector-analysis/curl.md | 72 +++++++++++++++++++ .../vector-analysis/divergence.md | 4 +- .../vector-analysis/vector-operators.md | 2 + 3 files changed, 76 insertions(+), 2 deletions(-) diff --git a/docs/en/physics/mathematical-physics/vector-analysis/curl.md b/docs/en/physics/mathematical-physics/vector-analysis/curl.md index e69de29..c63f7ce 100644 --- a/docs/en/physics/mathematical-physics/vector-analysis/curl.md +++ b/docs/en/physics/mathematical-physics/vector-analysis/curl.md @@ -0,0 +1,72 @@ +# The curl of a vector field + +> *Definition*: the Levi-Civita permutation symbol is defined as +> +> $$ +> e_{ijk} = \begin{cases} 0 &\text{ if $i,j,k$ are identical}, \\ 1 &\text{ if the permutation $(i,j,k)$ is even}, \\ -1 &\text{ if the permutation $(i,j,k)$ is odd}.\end{cases} +> $$ +> +> + +The curl of a vector field may describe the circulation of a vector field and is defined below. + +> *Definition*: derivation and definition is missing for now. + +Note that the "cross product " between the nabla operator and the vector field $\mathbf{v}$ does not imply anything and is only there for notational sake. An alternative to this notation is using $\text{rot } \mathbf{v}$ to denote the curl or rotation. + +> *Theorem*: the curl of a vector field $\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$ for a curvilinear coordinate system is defined as +> +> $$ +> \nabla \times \mathbf{v}(\mathbf{x}) = \frac{1}{\sqrt{g(\mathbf{x})}} e^{ijk} \partial_i \big(v_j(\mathbf{x}) \big) \mathbf{a}_k(\mathbf{x}), +> $$ +> +> for all $\mathbf{x} \in \mathbb{R}^3$. + +??? note "*Proof*:" + + Will be added later. + +The curl of a vector field for a ortho-curvilinear coordinate system may also be derived and can be found below. + +> *Corollary*: the curl of a vector field $\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$ for a ortho-curvilinear coordinate system is defined as +> +> $$ +> \nabla \times \mathbf{v}(\mathbf{x}) = \frac{1}{h_1 h_2 h_3} e^{ijk} \partial_i \big(h_j v_{(j)}(\mathbf{x}) \big) h_k \mathbf{e}_{(k)}, +> $$ +> +> for all $\mathbf{x} \in \mathbb{R}^3$. + +??? note "*Proof*:" + + Will be added later. + +Please note that the scaling factors may also depend on the position $\mathbf{x} \in \mathbb{R}^3$ depending on the coordinate system. + +> *Proposition*: let $\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field and $f: \mathbb{R}^3 \to \mathbb{R}$ a scalar field then we have +> +> $$ +> \begin{align*} +> \nabla \cdot \big(\nabla \times \mathbf{v}(\mathbf{x}) \big) &= 0, \\ +> \nabla \times \nabla f(\mathbf{x}) &= \mathbf{0}, +> \end{align*} +> $$ +> +> for all $\mathbf{x} \in \mathbb{R}^3$. + +??? note "*Proof*:" + + Will be added later. + +Similarly to the [divergence theorem](divergence.md#divergence-in-curvilinear-coordinates) for the divergence, the curl is related to Kelvin-Stokes theorem given below. + +> *Theorem*: let $\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$ be a smooth vector field and $A \subset \mathbb{R}^3$ a closed surface with boundary curve $C \subset \mathbb{R}^3$ piecewise smooth we have that +> +> $$ +> \oint_C \big\langle \mathbf{v}(\mathbf{x}), d\mathbf{x} \big\rangle = \int_A \big\langle \nabla \times \mathbf{v}(\mathbf{x}), d\mathbf{A} \big\rangle, +> $$ +> +> is valid. + +??? note "*Proof*:" + + Will be added later. \ No newline at end of file diff --git a/docs/en/physics/mathematical-physics/vector-analysis/divergence.md b/docs/en/physics/mathematical-physics/vector-analysis/divergence.md index 1528c18..dd36296 100644 --- a/docs/en/physics/mathematical-physics/vector-analysis/divergence.md +++ b/docs/en/physics/mathematical-physics/vector-analysis/divergence.md @@ -104,10 +104,10 @@ Assuming the system is stationary the time derivative of the particles inside th We may also give the divergence for ortho-curvilinear coordinate systems. -> *Corollary*: the divergence of a flux density $\mathbf{\Gamma}: \mathbb{R}^3 \to \mathbb{R}^3$ for a ortho-curvilinear is given by +> *Corollary*: the divergence of a flux density $\mathbf{\Gamma}: \mathbb{R}^3 \to \mathbb{R}^3$ for a ortho-curvilinear coordinate system is given by > > $$ -> \nabla \cdot \mathbf{\Gamma}(\mathbf{x}, t) = \frac{1}{h_1h_2h_3} \partial_i \Big(\Gamma^i(\mathbf{x},t)\frac{1}{h_i} h_1 h_2 h_3 \Big) +> \nabla \cdot \mathbf{\Gamma}(\mathbf{x}, t) = \frac{1}{h_1h_2h_3} \partial_i \Big(\Gamma^{(i)}(\mathbf{x},t)\frac{1}{h_i} h_1 h_2 h_3 \Big) > $$ > > for all $\mathbf{x} \in \mathbb{R}^3$ and $i \in \{1, 2, 3\}$. diff --git a/docs/en/physics/mathematical-physics/vector-analysis/vector-operators.md b/docs/en/physics/mathematical-physics/vector-analysis/vector-operators.md index e69de29..51e806e 100644 --- a/docs/en/physics/mathematical-physics/vector-analysis/vector-operators.md +++ b/docs/en/physics/mathematical-physics/vector-analysis/vector-operators.md @@ -0,0 +1,2 @@ +# Vector operators +