1
0
Fork 0

Finished tensor symmetries.

This commit is contained in:
Luc Bijl 2024-05-14 17:51:53 +02:00
parent 25df6c2055
commit cc9c62307a
2 changed files with 174 additions and 13 deletions

View file

@ -55,9 +55,9 @@ $$
The outer product is associative and distributive with respect to addition and scalar multiplication, but not commutative. The outer product is associative and distributive with respect to addition and scalar multiplication, but not commutative.
Note that although the same symbol is used for the outer product and the denotion of a tensor space, these are not equivalent. Note that although the same symbol is used for the outer product and the denotation of a tensor space, these are not equivalent.
For the following statements we take $p=q=r=s=1$ without loss of generality. The following statements are given with $p=q=r=s=1$ without loss of generality.
> *Definition 4*: the mixed $(p, q)$-tensor $\mathbf{e}_i \otimes \mathbf{\hat e}^j \in \mathscr{T}_q^p(V)$ is defined as > *Definition 4*: the mixed $(p, q)$-tensor $\mathbf{e}_i \otimes \mathbf{\hat e}^j \in \mathscr{T}_q^p(V)$ is defined as
> >
@ -141,7 +141,7 @@ We have from theorem 2 that the outer product of two tensors yields another tens
> 2. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u})$, > 2. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u})$,
> 3. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in \mathbb{K}: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}).$ > 3. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in \mathbb{K}: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}).$
It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existance of an inner product is never implied. It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existence of an inner product is never implied.
> *Definition 6*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as > *Definition 6*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
> >
@ -210,7 +210,7 @@ $$
Since $u^i, v^j \in \mathbb{K}$ are arbitrary it follows that $\text{g}_{ij} = g_{ij}$. Since $u^i, v^j \in \mathbb{K}$ are arbitrary it follows that $\text{g}_{ij} = g_{ij}$.
Consequently the inverse $\mathbf{g}^{-1}: V^* \to V$ has the property $\mathbf{g}^{-1}(\mathbf{\hat u}) = G^{-1} \mathbf{\hat u}$ for all $\mathbf{\hat u} \in V^*$. The bijective linear map $\mathbf{g}$ is commonly known as the **metric** and $\mathbf{g}^{-1}$ as the **dual metric**. Consequently, the inverse $\mathbf{g}^{-1}: V^* \to V$ has the property $\mathbf{g}^{-1}(\mathbf{\hat u}) = G^{-1} \mathbf{\hat u}$ for all $\mathbf{\hat u} \in V^*$. The bijective linear map $\mathbf{g}$ is commonly known as the **metric** and $\mathbf{g}^{-1}$ as the **dual metric**.
It follows from theorem 3 that for $\mathbf{u} = u^i \mathbf{e}_i \in V$ and $\mathbf{\hat u} = u_i \mathbf{\hat e}^i \in V^*$ we have It follows from theorem 3 that for $\mathbf{u} = u^i \mathbf{e}_i \in V$ and $\mathbf{\hat u} = u_i \mathbf{\hat e}^i \in V^*$ we have
@ -232,7 +232,7 @@ with $u^j = g^{ij} u_i$.
> \mathbf{g}^{-1}(\mathbf{\hat e}^i) = g^{ij} \mathbf{e}_j. > \mathbf{g}^{-1}(\mathbf{\hat e}^i) = g^{ij} \mathbf{e}_j.
> $$ > $$
> >
> Likewise the basis $\{\mathbf{\hat e}^i\}$ of $V^*$ induces a **reciprocal dual basis** $\{\mathbf{g}(\mathbf{e}_i)\}$ of $V^*$ given by > Likewise, the basis $\{\mathbf{\hat e}^i\}$ of $V^*$ induces a **reciprocal dual basis** $\{\mathbf{g}(\mathbf{e}_i)\}$ of $V^*$ given by
> >
> $$ > $$
> \mathbf{g}(\mathbf{e}^i) = g_{ij} \mathbf{\hat e}^j. > \mathbf{g}(\mathbf{e}^i) = g_{ij} \mathbf{\hat e}^j.

View file

@ -1,30 +1,191 @@
# Tensor symmetries # Tensor symmetries
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a pseudo inner product $\bm{g}$ on $V$ and a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}.$ We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n,$ a pseudo inner product $\bm{g}$ on $V$ and a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}.$
## Symmetric tensors ## Symmetric tensors
> *Definition 1*: let $\pi = [\pi(1), \dots, \pi(k)]$ be any permutation of labels $\{1, \dots, k\}$, then $\mathbf{T} \in \mathscr{T}^0_q(V)$ is a symmetric covariant tensor if for all $\mathbf{v}_1, \dots, \mathbf{v}_q \in V$ we have > *Definition 1*: let $\pi = [\pi(1), \dots, \pi(k)]$ be any permutation of the set $\{1, \dots, k\}$, then $\mathbf{T} \in \mathscr{T}^0_q(V)$ is a **symmetric covariant** $q$-tensor if for all $\mathbf{v}_1, \dots, \mathbf{v}_q \in V$ we have
> >
> $$ > $$
> \mathbf{T}(\mathbf{v}_{\pi(1)}, \dots, \mathbf{v}_{\pi(q)}) = \mathbf{T}(\mathbf{v}_1, \dots, \mathbf{v}_q), > \mathbf{T}(\mathbf{v}_{\pi(1)}, \dots, \mathbf{v}_{\pi(q)}) = \mathbf{T}(\mathbf{v}_1, \dots, \mathbf{v}_q),
> $$ > $$
> >
> with $k = q$. > with $k = q \in \mathbb{N}$.
> >
> Likewise $\mathbf{T} \in \mathscr{T}^p_0(V)$ is called a symmetric contravariant tensor if for all $\mathbf{\hat u}_1, \dots, \mathbf{\hat u}_p \in V^*$ we have > Likewise, $\mathbf{T} \in \mathscr{T}^p_0(V)$ is a **symmetric contravariant** $p$-tensor if for all $\mathbf{\hat u}_1, \dots, \mathbf{\hat u}_p \in V^*$ we have
> >
> $$ > $$
> \mathbf{T}(\mathbf{\hat u}_{\pi(1)}, \dots, \mathbf{\hat u}_{\pi(p)}) = \mathbf{T}(\mathbf{\hat u}_1, \dots, \mathbf{\hat u}_p), > \mathbf{T}(\mathbf{\hat u}_{\pi(1)}, \dots, \mathbf{\hat u}_{\pi(p)}) = \mathbf{T}(\mathbf{\hat u}_1, \dots, \mathbf{\hat u}_p),
> $$ > $$
> >
> with $k = p$. > with $k = p \in \mathbb{N}$.
This symmetry implies that the ordering of the (co)vector arguments in a tensor evaluation do not affect the outcome. This symmetry implies that the ordering of the (co)vector arguments in a tensor evaluation do not affect the outcome.
> *Definition 2*: the vector space of symmetric covariant $q$-tensors is denoted by $\bigvee_q(V) \subset \mathscr{T}^0_q(V)$ and the vector space of symmetric contravariant $p$-tensors is denoted by $\bigwedge^p(V) \subset \mathscr{T}^p_0(V).$ > *Definition 2*: the vector space of symmetric covariant $q$-tensors is denoted by $\bigvee_q(V) \subset \mathscr{T}^0_q(V)$ and the vector space of symmetric contravariant $p$-tensors is denoted by $\bigvee^p(V) \subset \mathscr{T}^p_0(V).$
Alternatively one may write $\bigvee_q(V) = V^* \otimes_s \cdots \otimes_s V^*$ and $\bigwedge^p(V) = V \otimes_s \cdots \otimes_s V$. Alternatively one may write $\bigvee_q(V) = V^* \otimes_s \cdots \otimes_s V^*$ and $\bigvee^p(V) = V \otimes_s \cdots \otimes_s V.$
## Antisymmetric tensors ## Antisymmetric tensors
> *Definition 3*: let $\pi = [\pi(1), \dots, \pi(k)]$ be any permutation of the set $\{1, \dots, k\}$, then $\mathbf{T} \in \mathscr{T}^0_q(V)$ is an **antisymmetric covariant** $q$-tensor if for all $\mathbf{v}_1, \dots, \mathbf{v}_q \in V$ we have
>
> $$
> \mathbf{T}(\mathbf{v}_{\pi(1)}, \dots, \mathbf{v}_{\pi(q)}) = \mathrm{sign}(\pi) \mathbf{T}(\mathbf{v}_1, \dots, \mathbf{v}_q),
> $$
>
> with $k = q \in \mathbb{N}$.
>
> Likewise, $\mathbf{T} \in \mathscr{T}^p_0(V)$ is an **antisymmetric contravariant** $p$-tensor if for all $\mathbf{\hat u}_1, \dots, \mathbf{\hat u}_p \in V^*$ we have
>
> $$
> \mathbf{T}(\mathbf{\hat u}_{\pi(1)}, \dots, \mathbf{\hat u}_{\pi(p)}) = \mathrm{sign}(\pi)\mathbf{T}(\mathbf{\hat u}_1, \dots, \mathbf{\hat u}_p),
> $$
>
> with $k = p \in \mathbb{N}$.
This antisymmetry implies that the ordering of the (co)vector arguments in a tensor evaluation only change the sign of the outcome.
> *Definition 4*: the vector space of antisymmetric covariant $q$-tensors is denoted by $\bigwedge_q(V) \subset \mathscr{T}^0_q(V)$ and the vector space of antisymmetric contravariant $p$-tensors is denoted by $\bigwedge^p(V) \subset \mathscr{T}^p_0(V).$
Alternatively one may write $\bigwedge_q(V) = V^* \otimes_a \cdots \otimes_a V^*$ and $\bigwedge^p(V) = V \otimes_a \cdots \otimes_a V.$
It follows from the definitions of symmetric and antisymmetric tensors that for $0$-tensors we have
$$
{\bigvee}_0(V) = {\bigvee}^0(V) = {\bigwedge}_0(V) = {\bigwedge}^0(V) = \mathbb{K}.
$$
Furthermore, for $1$-tensors we have
$$
{\bigvee}_1(V) = {\bigwedge}_1(V) = V^*,
$$
and
$$
{\bigvee}^1(V) = {\bigwedge}^1(V) = V.
$$
## Symmetrisation maps
The following statements are given with the covariant $q$-tensor without loss of generality.
> *Definition 5*: the linear **symmetrisation map** $\mathscr{S}: \mathscr{T}^0_q \to \bigvee_q(V)$ is given by
>
> $$
> \mathscr{S}(\mathbf{T})(\mathbf{v}_1, \dots, \mathbf{v}_q) = \frac{1}{q!} \sum_\pi \mathbf{T}(\mathbf{v}_{\pi(1)}, \dots, \mathbf{v}_{\pi(q)}),
> $$
>
> for all $\mathbf{T} \in \mathscr{T}^0_q(V)$ in which summation runs over all permutations $\pi$ of the set $\{1, \dots, q\}$.
Let $\mathbf{T} = T_{i_1 \cdots i_q} \mathbf{\hat e}^{i_1} \otimes \cdots \otimes \mathbf{\hat e}^{i_q} \in \mathscr{T}^0_q(V)$, then we have $\mathscr{S}(\mathbf{T}) = T_{(i_1 \cdots i_q)} \mathbf{\hat e}^{i_1} \otimes \cdots \otimes \mathbf{\hat e}^{i_q} \in \bigvee_q(V)$ with
$$
T_{(i_1 \cdots i_q)} = \frac{1}{q!} \sum_\pi T_{i_{\pi(1)} \cdots i_{\pi(q)}}.
$$
If $\mathbf{T} \in \bigvee_q(V)$ then $\mathbf{T} = \mathscr{S}(\mathbf{T})$. The symmetrisation map is idempotent such that $\mathscr{S} \circ \mathscr{S} = \mathscr{S}.$
> *Definition 6*: the linear **antisymmetrisation map** $\mathscr{A}: \mathscr{T}^0_q(V) \to \bigwedge_q(V)$ is given by
>
> $$
> \mathscr{A}(\mathbf{T})(\mathbf{v}_1, \dots, \mathbf{v}_q) = \frac{1}{q!} \sum_\pi \mathrm{sign}(\pi) \mathbf{T}(\mathbf{v}_{\pi(1)}, \dots, \mathbf{v}_{\pi(q)}),
> $$
>
> for all $\mathbf{T} \in \mathscr{T}^0_q(V)$ in which summation runs over all permutations $\pi$ of the set $\{1, \dots, q\}$.
Let $\mathbf{T} = T_{i_1 \cdots i_q} \mathbf{\hat e}^{i_1} \otimes \cdots \otimes \mathbf{\hat e}^{i_q} \in \mathscr{T}^0_q(V)$, then we have $\mathscr{A}(\mathbf{T}) = T_{[i_1 \cdots i_q]} \mathbf{\hat e}^{i_1} \otimes \cdots \otimes \mathbf{\hat e}^{i_q} \in \bigwedge_q(V)$ with
$$
T_{[i_1 \cdots i_q]} = \frac{1}{q!} \sum_\pi \mathrm{sign}(\pi) T_{i_{\pi(1)} \cdots i_{\pi(q)}}.
$$
If $\mathbf{T} \in \bigwedge_q(V)$ then $\mathbf{T} = \mathscr{A}(\mathbf{T})$. The antisymmetrisation map is idempotent such that $\mathscr{A} \circ \mathscr{A} = \mathscr{A}.$
## Symmetric product
The outer product does not preserve (anti)symmetry. For this reason alternative product operators are introduced which preserve (anti)symmetry. The following statements are given with covariant tensors without loss of generality.
> *Definition 7*: the **symmetric product** between two tensors is defined as
>
> $$
> \mathbf{T} \vee \mathbf{S} = (q+s)! \cdot \mathscr{S}(\mathbf{T} \otimes \mathbf{S}),
> $$
>
> for all $\mathbf{T} \in \mathscr{T}^0_q(V)$ and $\mathbf{S} \in \mathscr{T}^0_s(V)$ with $q,s \in \mathbb{N}$.
It follows from definition 7 that the symmetric product is associative, bilinear and symmetric. Subsequently, we may write a basis of $\bigvee_q(V)$ as
$$
\mathscr{S}(\mathbf{\hat e}^{i_1} \otimes \cdots \otimes \mathbf{\hat e}^{i_q}) = \frac{1}{q!} \mathbf{\hat e}^{i_1} \vee \cdots \vee \mathbf{\hat e}^{i_q},
$$
with $\{1 \leq i_1 \leq \dots \leq i_q \leq n\}$.
Let $\mathbf{T} \in \bigvee_q(V)$ and $\mathbf{S} \in \bigvee_s(V)$ then it follows that
$$
\mathbf{T} \vee \mathbf{S} = \mathbf{S} \vee \mathbf{T}.
$$
> *Definition 8*: the **antisymmetric product** between two tensors is defined as
>
> $$
> \mathbf{T} \wedge \mathbf{S} = (q+s)! \cdot \mathscr{A}(\mathbf{T} \otimes \mathbf{S}),
> $$
>
> for all $\mathbf{T} \in \mathscr{T}^0_q(V)$ and $\mathbf{S} \in \mathscr{T}^0_s(V)$ with $q,s \in \mathbb{N}$.
It follows from definition 8 that the antisymmetric product is associative, bilinear and antisymmetric. Subsequently, we may write a basis of $\bigwedge_q(V)$ as
$$
\mathscr{A}(\mathbf{\hat e}^{i_1} \otimes \cdots \otimes \mathbf{\hat e}^{i_q}) = \frac{1}{q!} \mathbf{\hat e}^{i_1} \wedge \cdots \wedge \mathbf{\hat e}^{i_q},
$$
with $\{1 \leq i_1 < \dots < i_q \leq n\}$.
Let $\mathbf{T} \in \bigwedge_q(V)$ and $\mathbf{S} \in \bigwedge_s(V)$ then it follows that
$$
\mathbf{T} \wedge \mathbf{S} = (-1)^{qs} \mathbf{S} \wedge \mathbf{T}.
$$
> *Theorem 1*: the dimension of the vector space of symmetric covariant $q$-tensors is given by
>
> $$
> \dim \Big({\bigvee}_q(V) \Big) = \binom{n+q-1}{q},
> $$
>
> and for antisymmetric covariant $q$-tensors the dimension is given by
>
> $$
> \dim \Big({\bigwedge}_q(V) \Big) = \binom{n}{q}.
> $$
??? note "*Proof*:"
Will be added later.
An interesting result of the definition of the (anti)symmetric product is given in the theorem below.
> *Theorem 2*: let $\mathbf{T} \in \mathscr{T}^0_q(V)$ and $\mathbf{S} \in \mathscr{T}^0_s(V)$ be tensors with $q,s \in \mathbb{N}$, the symmetric product of $\mathbf{T}$ and $\mathbf{S}$ may be given by
>
> $$
> (\mathbf{T} \vee \mathbf{S})(\mathbf{v}_1, \dots, \mathbf{v}_{q+s}) = T_{i_1 \cdots i_q} S_{i_{q+1} \cdots i_{q+s}} \mathrm{perm}(\mathbf{k}(\mathbf{\hat e}^{i_j}, \mathbf{v}_k)),
> $$
>
> for all $(\mathbf{v}_1, \dots, \mathbf{v}_{q+s}) \in V^{q+s}$ with $(j,k)$ denoting the entry of the matrix over which the permanent is taken.
>
> The antisymmetric product of $\mathbf{T}$ and $\mathbf{S}$ may be given by
>
> $$
> (\mathbf{T} \vee \mathbf{S})(\mathbf{v}_1, \dots, \mathbf{v}_{q+s}) = T_{i_1 \cdots i_q} S_{i_{q+1} \cdots i_{q+s}} \det(\mathbf{k}(\mathbf{\hat e}^{i_j}, \mathbf{v}_k)),
> $$
>
> for all $(\mathbf{v}_1, \dots, \mathbf{v}_{q+s}) \in V^{q+s}$ with $(j,k)$ denoting the entry of the matrix over which the determinant is taken.
??? note "*Proof*:"
Will be added later.