Finished Lagrangian mechanics.
This commit is contained in:
parent
97bf770ee1
commit
e88c2506ab
5 changed files with 100 additions and 1 deletions
|
@ -130,6 +130,9 @@ nav:
|
||||||
- 'Lagrangian formalism': physics/mechanics/lagrangian-mechanics/lagrangian-formalism.md
|
- 'Lagrangian formalism': physics/mechanics/lagrangian-mechanics/lagrangian-formalism.md
|
||||||
- 'Lagrange equations': physics/mechanics/lagrangian-mechanics/lagrange-equations.md
|
- 'Lagrange equations': physics/mechanics/lagrangian-mechanics/lagrange-equations.md
|
||||||
- 'Lagrange generalizations': physics/mechanics/lagrangian-mechanics/lagrange-generalizations.md
|
- 'Lagrange generalizations': physics/mechanics/lagrangian-mechanics/lagrange-generalizations.md
|
||||||
|
- 'Applications':
|
||||||
|
- 'Celestial mechanics': physics/mechanics/lagrangian-mechanics/applications/celestial-mechanics.md
|
||||||
|
- 'Oscillations': physics/mechanics/lagrangian-mechanics/applications/oscillations.md
|
||||||
# - 'Hamiltonian mechanics':
|
# - 'Hamiltonian mechanics':
|
||||||
# - 'Relativistic mechanics':
|
# - 'Relativistic mechanics':
|
||||||
# - 'Quantum mechanics':
|
# - 'Quantum mechanics':
|
||||||
|
|
|
@ -0,0 +1 @@
|
||||||
|
# Celestial mechanics
|
|
@ -0,0 +1 @@
|
||||||
|
# Oscillations
|
|
@ -1,2 +1,96 @@
|
||||||
# Lagrange generalizations
|
# Lagrange generalizations
|
||||||
|
|
||||||
|
## The generalized momentum and force
|
||||||
|
|
||||||
|
> *Definition 1*: let $\mathcal{L}: (\mathbf{q}, \mathbf{q'}) \mapsto \mathcal{L}(\mathbf{q}, \mathbf{q'})$ be the Lagrangian, the **generalized momentum** $p_j: (\mathbf{q}, \mathbf{q}') \mapsto p_j(\mathbf{q},\mathbf{q}')$ is defined as
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> p_j(\mathbf{q},\mathbf{q}') = \partial_{q_j'} \mathcal{L}(\mathbf{q}, \mathbf{q'}),
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for all $t \in \mathbb{R}$.
|
||||||
|
|
||||||
|
The generalized momentum may also be referred to as the canonical or conjugated momentum. Recall that $j \in \mathbb{N}[j\leq f]$.
|
||||||
|
|
||||||
|
> *Definition 2*: let $\mathcal{L}: (\mathbf{q}, \mathbf{q'}) \mapsto \mathcal{L}(\mathbf{q}, \mathbf{q'})$ be the Lagrangian, the **generalized force of type II** $F_j: (\mathbf{q}, \mathbf{q}') \mapsto F_j(\mathbf{q},\mathbf{q}')$ is defined as
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> F_j(\mathbf{q},\mathbf{q}') = \partial_{q_j} \mathcal{L}(\mathbf{q}, \mathbf{q'})
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for all $t \in \mathbb{R}$.
|
||||||
|
|
||||||
|
We may also write $\mathbf{p} = \{p_j\}_{j=1}^f$ and $\mathbf{F} = \{F_j\}_{j=1}^f$.
|
||||||
|
|
||||||
|
## The generalized energy
|
||||||
|
|
||||||
|
> *Theorem 1*: let $\mathcal{L}: (\mathbf{q}, \mathbf{q'}) \mapsto \mathcal{L}(\mathbf{q}, \mathbf{q'})$ be the Lagrangian, the generalized energy $h: (\mathbf{q}, \mathbf{q'},\mathbf{p}) \mapsto h(\mathbf{q}, \mathbf{q'},\mathbf{p})$ is given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> h(\mathbf{q}, \mathbf{q'}, \mathbf{p}) = \sum_{j=1}^f \big(p_j q_j' \big) - \mathcal{L}(\mathbf{q}, \mathbf{q'}),
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for all $t \in \mathbb{R}$.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
A generalization of the concept of energy.
|
||||||
|
|
||||||
|
* If the Lagrangian $\mathcal{L}: (\mathbf{q}, \mathbf{q'},t) \mapsto \mathcal{L}(\mathbf{q}, \mathbf{q'},t)$ is explicitly time-dependent $\partial_t \mathcal{L}(\mathbf{q}, \mathbf{q'},t) \neq 0$ and the generalized energy $h$ is not conserved.
|
||||||
|
* If the Lagrangian $\mathcal{L}: (\mathbf{q}, \mathbf{q'}) \mapsto \mathcal{L}(\mathbf{q}, \mathbf{q'})$ is not explicitly time-dependent $\partial_t \mathcal{L}(\mathbf{q}, \mathbf{q'}) = 0$ and the generalized energy $h$ is conserved.
|
||||||
|
|
||||||
|
> *Theorem 2*: for autonomous systems with only conservative forces the generalized energy $h: (\mathbf{q}, \mathbf{q'}) \mapsto h(\mathbf{q}, \mathbf{q'})$ is conserved and is given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> h(\mathbf{q}, \mathbf{q'}) = T(\mathbf{q},\mathbf{q}') + V(\mathbf{q}) \overset{\mathrm{def}}= E,
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for all $t \in \mathbb{R}$ with $T: (\mathbf{q}, \mathbf{q}') \mapsto T(\mathbf{q}, \mathbf{q'})$ and $V: \mathbf{q} \mapsto V(\mathbf{q})$ the kinetic and potential energy of the system and $E \in \mathbb{R}$ the total energy of the system.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
In this case the generalized energy $h$ is conserved and is equal to the total energy $E$ of the system.
|
||||||
|
|
||||||
|
## Conservation of generalized momentum
|
||||||
|
|
||||||
|
> *Definition 3*: let $\mathcal{L}: (\mathbf{q}, \mathbf{q'}) \mapsto \mathcal{L}(\mathbf{q}, \mathbf{q'})$ be the Lagrangian, a coordinate $q_j$ is **cyclic** if
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \partial_{q_j} \mathcal{L}(\mathbf{q}, \mathbf{q'}) = 0,
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for all $t \in \mathbb{R}$.
|
||||||
|
|
||||||
|
Therefore the Lagrangian is independent of a cyclic coordinate.
|
||||||
|
|
||||||
|
> *Proposition 1*: the generalized momentum $p_j$ corresponding to a cyclic coordinate $q_j$ is conserved.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
## Seperable systems
|
||||||
|
|
||||||
|
> *Proposition 2*: the Lagrangian is seperable if there exists two mutually independent subsystems.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
Obtaining a decoupled set of partial differential equations.
|
||||||
|
|
||||||
|
## Invariances
|
||||||
|
|
||||||
|
> *Proposition 3*: the Lagrangian is invariant for Gauge transformations and therefore **not unique**.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
There can exist multiple Lagrangians that may lead to the same equation of motion.
|
||||||
|
|
||||||
|
According to the theorem of Noether, the invariance of a closed system with respect to continuous transformations implies that corresponding conservation laws exist.
|
|
@ -1,6 +1,6 @@
|
||||||
# Lagrangian formalism
|
# Lagrangian formalism
|
||||||
|
|
||||||
The Lagrangian formalism of mechanics is based on the axioms, postulates and principles posed in the [Newtonian formalism](../newtonian-mechanics/newtonian-formalism).
|
The Lagrangian formalism of mechanics is based on the axioms, postulates and principles posed in the [Newtonian formalism](/en/physics/newtonian-mechanics/newtonian-formalism.md).
|
||||||
|
|
||||||
## Configuration of a system
|
## Configuration of a system
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue