Section determinants almost finished.
This commit is contained in:
parent
0d1de9a6aa
commit
ec3613bf68
1 changed files with 108 additions and 1 deletions
|
@ -81,7 +81,31 @@ $$
|
||||||
|
|
||||||
??? note "*Proof*:"
|
??? note "*Proof*:"
|
||||||
|
|
||||||
Will be added later.
|
Let $A$ be a $n \times n$ triagular matrix with $n \in \mathbb{N}$ given by
|
||||||
|
|
||||||
|
$$
|
||||||
|
A = \begin{pmatrix} a_{11} & \cdots &a_{1n}\\ & \ddots & \vdots \\ & & a_{nn} \end{pmatrix}.
|
||||||
|
$$
|
||||||
|
|
||||||
|
We claim that $\det(A) = a_{11} \cdot a_{22} \cdots a_{nn}$. We first check the claim for $n=1$ which is given by $\det(A) = a_{11}$.
|
||||||
|
|
||||||
|
Now suppose for some $k \in \mathbb{N}$, the determinant of a $k \times k$ triangular $A_{k}$ is given by
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A_k) = a_1{11} \cdot a_{22} \cdots a_{kk}
|
||||||
|
$$
|
||||||
|
|
||||||
|
then by assumption
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A_{k+1}) = \begin{pmatrix} A_k & a_{(k+1)1}\\& \vdots\\ 0 \cdots 0 & a_{(k+1)(k+1)}\end{pmatrix} = a_{(k+1)(k+1)} \det(A_k) + 0 = a_{11}a_1{11} \cdot a_{22} \cdots a_{kk} \cdot a_{(k+1)(k+1)}.
|
||||||
|
$$
|
||||||
|
|
||||||
|
Hence if the claim holds for some $k \in \mathbb{N}$ then it also holds for $k+1$. The principle of natural induction implies now that for all $n \in \mathbb{N}$ we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A) = a_{11} \cdot a_{22} \cdots a_{nn}.
|
||||||
|
$$
|
||||||
|
|
||||||
> *Theorem*: let $A$ be an $n \times n$ matrix
|
> *Theorem*: let $A$ be an $n \times n$ matrix
|
||||||
>
|
>
|
||||||
|
@ -92,3 +116,86 @@ $$
|
||||||
|
|
||||||
Will be added later.
|
Will be added later.
|
||||||
|
|
||||||
|
> *Lemma*: let $A$ be an $n \times n$ matrix with $n \in \mathbb{N}$. If $A_{jk}$ denotes the cofactor of $a_{jk}$ for $k \in \mathbb{N}$ then
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> a_{i1} A_{j1} + a_{i2} A_{j2} + \dots + a_{in} A_{jn} = \begin{cases} \det(A) &\text{ if } i = j,\\ 0 &\text{ if } i \neq j.\end{cases}
|
||||||
|
> $$
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
If $i = j$ then we obtain the cofactor expansion of $\det(A)$ along the $i$th row of $A$.
|
||||||
|
|
||||||
|
If $i \neq j$, let $A^*$ be the matrix obtained by replacing the $j$th row of $A$ by the $i$th row of $A$
|
||||||
|
|
||||||
|
$$
|
||||||
|
A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ \vdots \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{array}{ll} j\text{th row}\\ \\ \\ \\\end{array}
|
||||||
|
$$
|
||||||
|
|
||||||
|
since two rows of $A^*$ are the same its determinant must be zero. It follows from the cofactor expansion of $\det(A^*)$ along the $j$th row that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
0 &= \det(A^*) = a_{i1} A_{j1}^* + a_{i2} A_{j2}^* + \dots + a_{in} A_{jn}^*, \\
|
||||||
|
&= a_{i1} A_{j1} + a_{i2} A_{j2} + \dots + a_{in} A_{jn}.
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
> *Theorem*: let $E$ be an $n \times n$ elementary matrix and $A$ an $n \times n$ matrix with $n \in \mathbb{N}$ then we have
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \det(E A) = \det(E) \det(A),
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> where
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \det(E) = \begin{cases} -1 &\text{ if $E$ is of type I},\\ \alpha \in \mathbb{R}\backslash \{0\} &\text{ if $E$ is of type II},\\ 1 &\text{ if $E$ is of type III}. \end{cases}
|
||||||
|
> $$
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
Similar results hold for column operations, since for the elementary matrix $E$, $E^T$ is also an elementary matrix and $\det(A E) = \det((AE)^T) = \det(E^T A^T) = \det(E^T) \det(A^T) = \det(E) \det(A)$.
|
||||||
|
|
||||||
|
> *Theorem*: an $n \times n$ matrix A with $n \in \mathbb{N}$ is singular if and only if
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \det(A) = 0
|
||||||
|
> $$
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Let $A$ be an $n \times n$ matrixwith $n \in \mathbb{N}$. Matrix $A$ can be reduced to row echelon form with a finite number of row operations obtaining
|
||||||
|
|
||||||
|
$$
|
||||||
|
U = E_k E_{k-1} \cdots E_1 A,
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $U$ is in $n \times n$ row echelon form and $E_i$ are $n \times n$ elementary matrices for $i \in \{1, \dots, k\}$. It follows then that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\det(U) &= \det(E_k E_{k-1} \cdots E_1 A), \\
|
||||||
|
&= \det(E_k) \det(E_{k-1}) \cdots \det(E_1) \det(A).
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Since the determinants of the elementary matrices are all nonzero, it follows that $\det(A) = 0$ if and only if $\det(U) = 0$. If $A$ is singular then $U$ has a row consisting entirely of zeros and hence $\det(U) = 0$. If $A$ is nonsingular then $U$ is triangular with 1's along the diagonal and hence $\det(U) = 1$.
|
||||||
|
|
||||||
|
From this theorem we may pose a method for computing $\det(A)$ by taking
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A) = \Big(\det(E_k) \det(E_{k-1} \cdots \det(E_1)\Big)^{-1}.
|
||||||
|
$$
|
||||||
|
|
||||||
|
> *Theorem*: let $A$ and $B$ be $n \times n$ matrices with $n \in \mathbb{N}$ then
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \det(AB) = \det(A) \det(B)
|
||||||
|
> $$
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
Loading…
Reference in a new issue