diff --git a/docs/en/mathematics/linear-algebra/determinants.md b/docs/en/mathematics/linear-algebra/determinants.md index ddfb1b8..d49fb5d 100644 --- a/docs/en/mathematics/linear-algebra/determinants.md +++ b/docs/en/mathematics/linear-algebra/determinants.md @@ -198,4 +198,106 @@ $$ ??? note "*Proof*:" - Will be added later. \ No newline at end of file + If $n \times n$ matrix $B$ is singular with $n \in \mathbb{N}$ then it follows that $AB$ is also singular and therefore + + $$ + \det(AB) = 0 = \det(A) \det(B), + $$ + + If $B$ is nonsingular, $B$ can be written as a product of elementary matrices. Therefore + + $$ + \begin{align*} + \det(AB) &= \det(A E_k \cdots E_1) + &= \det(A)\det(E_k)\cdots\det(E_1) + &- \det(A)\det(E_K \cdots E_1) + &= \det(A)\det(B). + \end{align*} + $$ + +> *Theorem*: let $A$ be a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$,then we have +> +> $$ +> \det(A^{-1}) = \frac{1}{\det(A)}. +> $$ + +??? note "*Proof*:" + + Suppose $A$ is a nonsingular $n \times n$ matrix then + + $$ + A^{-1} A = I, + $$ + + and taking the determinant on both sides + + $$ + \det(A^{-1}A) = \det(A^{-1})\det(A) = \det(I) = 1, + $$ + + therefore + + $$ + \det(A^{-1}) = \frac{1}{\det(A)}. + $$ + +## The adjoint of a matrix + +> *Definition*: let $A$ be an $n \times n$ matrix with $n \in \mathbb{N}$, the adjoint of $A$ is given by +> +> $$ +> \mathrm{adj}(A) = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn}\end{pmatrix} +> $$ +> +> with $A_{ij}$ for $(i,j) \in \{1, \dots, n\} \times \{1, \dots, n\}$ the cofactors of $A$. + +The use of the adjoint becomes in the following theorem, that generally saves a lot of time and brain capacity. + +> *Theorem*: let $A$ be a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$ then we have +> +> $$ +> A^{-1} = \frac{1}{\det(A)} \text{ adj}(A). +> $$ + +??? note "*Proof*:" + + Suppose $A$ is a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$, from the definition and the lemma above it follows that + + $$ + \text{adj}(A) A= \det(A) I, + $$ + + this may be rewritten into + + $$ + A^{-1} = \frac{1}{\det(A)} \text{ adj}(A). + $$ + +## Cramer's rule + +> *Theorem*: let $A$ be an $n \times n$ nonsingular matrix with $n \in \mathbb{N}$ and let $\mathbf{b} \in \mathbb{R}^n$. Let $A_i$ be the matrix obtained by replacing the $i$th column of $A$ by $\mathbf{b}$. If $\mathbf{x}$ is the unique solution of $A\mathbf{x} = \mathbf{b}$ then +> +> $$ +> x_i = \frac{\det(A_i)}{\det(A)} +> $$ +> +> for $i \in \{1, \dots, n\}$. + +??? note "*Proof*:" + + Let $A$ be an $n \times n$ nonsingular matrix with $n \in \mathbb{N}$ and let $\mathbf{b} \in \mathbb{R}^n$. If $\mathbf{x}$ is the unique solution of $A\mathbf{x} = \mathbf{b}$ then we have + + $$ + \mathbf{x} = A^{-1} \mathbf{b} = \frac{1}{\det(A)} \text{ adj}(A) \mathbf{b} + $$ + + it follows that + + $$ + \begin{align*} + x_i &= \frac{b_1 A_1i + \dots + b_n A_{ni}}{\det(A)} \\ + &= \frac{\det(A_i)}{\det(A)} + \end{align*} + $$ + + for $i \in \{1, \dots, n\}$. \ No newline at end of file