# Eigenspaces ## Eigenvalues and eigenvectors If a linear transformation is represented by an $n \times n$ matrix $A$ and there exists a nonzero vector $\mathbf{x} \in V$ such that $A \mathbf{x} = \lambda \mathbf{x}$ for some $\lambda \in \mathbb{K}$, then for this transformation $\mathbf{x}$ is a natural choice to use as a basis vector for $V$. > *Definition 1*: let $A$ be a $n \times n$ matrix, a scalar $\lambda \in \mathbb{K}$ is defined as an **eigenvalue** of $A$ if and only if there exists a vector $\mathbf{x} \in V \backslash \{\mathbf{0}\}$ such that > > $$ > A \mathbf{x} = \lambda \mathbf{x}, > $$ > > with $\mathbf{x}$ defined as an **eigenvector** belonging to $\lambda$. This notion can be further generalized to a linear operator $L: V \to V$ such that $$ L(\mathbf{x}) = \lambda \mathbf{x}, $$ note that $L(\mathbf{x}) = A \mathbf{x}$, which implies the similarity. Furthermore it follows from the definition that any linear combination of eigenvectors is also a eigenvector of $A$. > *Theorem 1*: let $A$ be a $n \times n$ matrix, a scalar $\lambda \in \mathbb{K}$ is an eigenvalue of $A$ if and only if > > $$ > \det (A - \lambda I) = 0. > $$ ??? note "*Proof*:" A scalar $\lambda \in \mathbb{K}$ is an eigenvalue of $A$ if and only if there exists a vector $\mathbf{x} \in V \backslash \{\mathbf{0}\}$ such that $$ A \mathbf{x} = \lambda \mathbf{x}, $$ obtains $$ A \mathbf{x} - \lambda \mathbf{x} = (A - \lambda I) \mathbf{x} = \mathbf{0}, $$ which implies that $(A - \lambda I)$ is singular and $\det(A - \lambda I) = 0$ by [definition](../determinants/#properties-of-determinants). The eigenvalues $\lambda$ may thus be determined from the **characteristic polynomial** of degree $n$ that is obtained from $\det (A - \lambda I) = 0$. In particular, the eigenvalues are the roots of this polynomial. > *Theorem 2*: let $A$ be a $n \times n$ matrix and let $\lambda \in \mathbb{K}$ be an eigenvalue of $A$. A vector $\mathbf{x} \in V$ is an eigenvector of $A$ corresponding to $\lambda$ if and only if > > $$ > \mathbf{x} \in N(A - \lambda I) \backslash \{\mathbf{0}\}. > $$ ??? note "*Proof*:" Let $A$ be a $n \times n$ matrix, $\mathbf{x} \in V$ is an eigenvector of $A$ if and only if $$ A \mathbf{x} = \lambda \mathbf{x}, $$ for an eigenvalue $\lambda \in \mathbb{K}$. Therefore $$ A \mathbf{x} - \lambda \mathbf{x} = (A - \lambda I) \mathbf{x} = \mathbf{0}, $$ which implies that $\mathbf{x} \in N(A - \lambda I)$. Which implies that the eigenvectors can be obtained by determining the corresponding null space of $A - \lambda I$. > *Definition 2*: let $L: V \to V$ be a linear operator and let $\lambda \in \mathbb{K}$ be an eigenvalue of $L$. Let the **eigenspace** $E_\lambda$ of the corresponding eigenvalue $\lambda$ be defined as > > $$ > E_\lambda = \{\mathbf{x} \in V \;|\; L(\mathbf{x}) = \lambda \mathbf{x}\} = N(A - \lambda I), > $$ > > with $L(\mathbf{x}) = A \mathbf{x}$. It may be observed that $E_\lambda$ is a subspace of $V$ consisting of the zero vector and the eigenvectors of $L$ or $A.$ ### Properties > *Theorem 3*: if $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ are distinct eigenvalues of an $n \times n$ matrix $A$ with corresponding eigenvectors $\mathbf{x}_1, \dots \mathbf{x}_k \in V\backslash \{\mathbf{0}\}$, then $\mathbf{x}_1, \dots \mathbf{x}_k$ are linearly independent. ??? note "*Proof*:" Will be added later. If $A \in \mathbb{R}^{n \times n}$ and $A \mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \in V$ and $\lambda \in \mathbb{K}$. Then $$ A \mathbf{\bar x} = \overline{A \mathbf{x}} = \overline{\lambda \mathbf{x}} = \bar \lambda \mathbf{\bar x}. $$ The complex conjugate of an eigenvector of $A$ is also an eigenvector of $A$ with an eigenvalue $\bar \lambda$. > *Theorem 4*: let $A$ be a $n \times n$ matrix and let $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ be the eigenvalues of $A$. It follows that > > $$ > \det (A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda), > $$ > > and > > $$ > \det (A) = \lambda_1 \lambda_2 \cdots \lambda_n. > $$ ??? note "*Proof*:" Let $A$ be a $n \times n$ matrix and let $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ be the eigenvalues of $A$. It follows from the [fundamental theorem of algebra](../../number-theory/complex-numbers/#roots-of-polynomials) that $$ \det (A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda), $$ by taking $\lambda = 0$ it follows that $$ \det (A) = \lambda_1 \lambda_2 \cdots \lambda_n. $$ From $\det (A) = \lambda_1 \lambda_2 \cdots \lambda_n$ it must follow that $$ \mathrm{trace}(A) = \sum_{i=1}^n \lambda_i. $$ > *Theorem 5*: let $A$ and $B$ be $n \times n$ matrices. If $B$ is similar to $A$, then $A$ and $B$ have the same eigenvalues. ??? note "*Proof*:" Let $A$ and $B$ be similar $n \times n$ matrices, then there exists a nonsingular matrix $S$ such that $$ B = S^{-1} A S. $$ Let $\lambda \in \mathbb{K}$ be an eigenvalue of $B$ then $$ \begin{align*} 0 &= \det(B - \lambda I), \\ &= \det(S^{-1} A S - \lambda I), \\ &= \det(S^{-1}(A - \lambda I) S), \\ &= \det(S^{-1}) \det(A - \lambda I) \det(S), \\ &= \det(A - \lambda I). \end{align*} $$ ## Diagonalization > *Definition 3*: an $n \times n$ matrix $A$ is **diagonalizable** if there exists a nonsingular diagonalizing matrix $X$ and a diagonal matrix $D$ such that > > $$ > A X = X D. > $$ We may now pose the following theorem. > *Theorem 6*: an $n \times n$ matrix $A$ is diagonalizable if and only if $A$ has $n \in \mathbb{N}$ linearly independent eigenvectors. ??? note "*Proof*:" Will be added later. It follows from the proof that the column vectors of the diagonalizing matrix $X$ are eigenvectors of $A$ and the diagonal elements of $D$ are the corresponding eigenvalues of $A$. If $A$ is diagonalizable, then $$ A = X D X^{-1}, $$ it follows then that $$ A^k = X D^k X^{-1}, $$ for $k \in \mathbb{K}$. ### Hermitian case The following section is for the special case that a matrix is [Hermitian](../matrices/matrix-arithmatic/#hermitian-matrix). > *Theorem 7*: the eigenvalues of a Hermitian matrix are real. ??? note "*Proof*:" Let $A$ be a Hermitian matrix and let $\mathbf{x} \in V \backslash \{\mathbf{0}\}$ be an eigenvector of $A$ with corresponding eigenvalue $\lambda \in \mathbb{C}$. We have $$ \begin{align*} \lambda \mathbf{x}^H \mathbf{x} &= \mathbf{x}^H (\lambda \mathbf{x}), \\ &= \mathbf{x}^H (A \mathbf{x}), \\ &= (\mathbf{x}^H A) \mathbf{x}, \\ &= (A^H \mathbf{x})^H \mathbf{x} , \\ &= (A \mathbf{x})^H \mathbf{x}, \\ &= (\lambda \mathbf{x})^H \mathbf{x}, \\ &= \bar \lambda \mathbf{x}^H \mathbf{x}, \end{align*} $$ since $\bar \lambda = \lambda$ we must have that $\lambda \in \mathbb{R}$. > *Theorem 8*: the eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues are orthogonal. ??? note "*Proof*:" Let $A$ be a Hermitian matrix and let $\mathbf{x}_1, \mathbf{x}_2 \in V \backslash \{\mathbf{0}\}$ be two eigenvectors of $A$ with corresponding eigenvalues $\lambda_1, \lambda_2 \in \mathbb{C}[\lambda_1 \neq \lambda_2]$. We have $$ \begin{align*} \lambda_1 \mathbf{x}_1^H \mathbf{x}_2 &= (\lambda_1 \mathbf{x}_1)^H \mathbf{x}_2, \\ &= (A \mathbf{x}_1)^H \mathbf{x}_2, \\ &= \mathbf{x}_1^H A^H \mathbf{x}_2, \\ &= \mathbf{x}_1^H A \mathbf{x}_2, \\ &= \mathbf{x}_1^H (\lambda_2 \mathbf{x}_2), \\ &= \lambda_2 \mathbf{x}_1^H \mathbf{x}_2, \end{align*} $$ since $\lambda_1 \neq \lambda_2$ this must imply that $\mathbf{x}_1^H \mathbf{x}_2 = 0$, implying orthogonality in terms of the Hermite scalar product. Theorem 7 and 8 impose that the following definition can be used. > *Definition 4*: an $n \times n$ matrix $U$ is **unitary** if the column vectors of $U$ form an orthonormal set in $V$. Thus, $U$ is unitary if and only if $U^H U = I$. Then it also follows that $U^{-1} = U^H$. A real unitary matrix is an orthogonal matrix. One may observe that theorem 8 implies that the diagonalizing matrix of a Hermitian matrix $A$ is unitary when $A$ has distinct eigenvalues. > *Lemma 1*: if the eigenvalues of a Hermitian matrix $A$ are distinct, then there exists a unitary matrix $U$ and a diagonal matrix $D$ such that > > $$ > A U = U D. > $$ ??? note "*Proof*:" Will be added later. With the column vectors of $U$ the eigenvectors of $A$ and the diagonal elements of $D$ the corresponding eigenvalues of $A$. > *Theorem 9*: let $A$ be an $n \times n$ matrix, there exists a unitary matrix $U$ and a upper triangular matrix $T$ such that > > $$ > A U = U T. > $$ ??? note "*Proof*:" Will be added later. The factorization $A = U T U^H$ is often referred to as the *Schur decomposition* of $A$. > *Theorem 10*: if $A$ is Hermitian, then there exists a unitary matrix $U$ and a diagonal matrix $D$ such that > > $$ > A U = U D. > $$ ??? note "*Proof*:" Will be added later.