documentation/docs/alpine-server-setup/provisioning.md

4.2 KiB

Provisioning

Flash the Alpine Linux extended ISO and make sure the secureboot keys are reset and TPM is enabled in the BIOS of the host.

After booting the Alpine Linux extended ISO, partition the disks. For this action internet is required since zfs, sgdisk and various other necessary packages are not included on the extended ISO, therefore they need to be obtained from the alpine package repository.

To set it up setup-interfaces and setup-apkrepos will be used.

# setup-interfaces -ar
# setup-apkrepos -c1

To use Wi-Fi simply run setup-interfaces -r and select wlan0 or similar.

A few packages will have to be installed first,

# apk add zfs lsblk sgdisk wipefs dosfstools acpid mdadm tpm2-tools zlevis

and load the ZFS kernel module

# modprobe zfs

Define the disks you want to use for this install,

# export disks="/dev/disk/by-id/<id-disk-1> ... /dev/disk/by-id/<id-disk-n>"

with <id-disk-n> for n \in \mathbb{N} the id of the disk.

According to openzfs-FAQ using /dev/disk/by-id/ is the best practice for small pools. For larger pools, using serial Attached SCSI (SAS) and the like, see vdev_id for proper configuration.

Wipe the existing disk partitions:

# for disk in $disks; do
> zpool labelclear -f $disk
> wipefs -a $disk
> sgdisk --zap-all $disk
> done

Create on each disk an EFI system partition (ESP) and a Linux filesystem partition:

# for disk in $disks; do
> sgdisk -n 1:1m:+512m -t 1:ef00 $disk
> sgdisk -n 2:0:-10m -t 2:8300 $disk
> done

Create device nodes:

# mdev -s

Define the EFI partitions:

# export efiparts=""
# for disk in $disks; do
> efipart=${disk}-part-1
> efiparts="$efiparts $efipart"
> done

Create a mdraid array on the EFI partitions:

# modprobe raid1
# mdadm --create --level 1 --metadata 1.0 --raid-devices <n> /dev/md/esp $efiparts
# mdadm --assemble --scan

Format the array with a FAT32 filesystem:

# mkfs.fat -F 32 /dev/md/esp

ZFS pool creation

Define the pool partitions

# export poolparts=""
# for disk in $disks; do
> poolpart=${disk}-part-2
> poolparts="$poolparts $poolpart"
> done

The ZFS system pool is going to be encrypted. First generate an encryption key and save it temporarily to the file /tmp/tank.key with:

# cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 20 | head -n 1 > /tmp/tank.key && cat /tmp/tank.key

Later on in the guide zlevis will be used for automatic decryption, so this key only has to be entered a few times. However, if any changes are made to the bios or secureboot then this key will be needed again, so make sure to save it.

Create the system pool:

# zpool create -f \
    -o ashift=12 \
    -O compression=lz4 \
    -O acltype=posix \ 
    -O xattr=sa \
    -O dnodesize=auto \
    -O encryption=on \
    -O keyformat=passphrase \
    -O keylocation=prompt \
    -m none \
    tank raidz1 $poolparts

Additionally, the spare option can be used to indicate spare disks. If more redundancy is preferred than raidz2 and raidz3 are possible alternatives for raidz1. If a single disk is used the raidz option can be left aside. For further information see zpool-create.

Then create the system datasets:

# zfs create -o mountpoint=none tank/root
# zfs create -o mountpoint=legacy -o quota=24g tank/root/alpine
# zfs create -o mountpoint=/home -o atime=off -o setuid=off -o devices=off -o quota=<home-quota> tank/home
# zfs create -o mountpoint=/var -o atime=off -o exec=off -o setuid=off -o devices=off -o quota=16g tank/var

Setting the <home-quota> depends on the total size of the pool, generally try to reserve some empty space in the pool.

Write the encryption key to TPM and store the jwe in tpm:jwe:

# zfs set tpm:jwe=$(zlevis-encrypt '{}' < /tmp/tank.key) tank

To check if it worked, perform zfs list -Ho tpm:jwe tank | zlevis-decrypt.

Finally, export the zpool:

# zpool export tank