Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
> satisfying the following properties, if $f,g \in C^\infty(\mathrm{M})$, $\mathbf{v} \in \Gamma(\mathrm{TM})$ and $\mathbf{T}, \mathbf{S} \in \Gamma(\mathscr{B})$ then
From property 3 it becomes clear that $\nabla_\mathbf{v}$ is an analogue of a directional derivative. The linear connection can also be defined in terms of the cotangent bundle and the dual fiber bundle.
> with formally $\mathbf{k}(\mathbf{\hat e}^j, \nabla_{\partial_k} \mathbf{e}_i) = \Gamma^j_{ik}$ the **linear connection symbols**, in this case $\nabla_{\partial_k} \mathbf{e}_i = \Gamma^j_{ik} \mathbf{e}_j$.
The covariant derivative can thus be seen as a linear connection for which only the basis is used of the tangent vector. The covariant derivative can also be applied on higher, mixed rank tensors $\mathbf{T} = T^{ij}_k \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k \in \Gamma(\mathscr{B})$ which obtains
with the dual linear connection symbols given by $\mathbf{k}(\nabla_{\partial_k} \mathbf{\hat e}^i, \mathbf{e}_j) = \hat \Gamma^j_{ik}$ with $\nabla_{\partial_k} \mathbf{\hat e}^i = \hat \Gamma^j_{ik} \mathbf{\hat e}^j$. We then have the following proposition such that we can simplify the above expression.
> *Proposition 1*: let $\Gamma^j_{ik}$ be the linear connection symbols of a covariant derivative and let $\hat \Gamma^j_{ik}$ be the dual linear connection symbols given by $\mathbf{k}(\nabla_{\partial_k} \mathbf{\hat e}^i, \mathbf{e}_j) = \hat \Gamma^j_{ik}$, then we have that