4.1 KiB
Linear connections
Let \mathrm{M}
be a differential manifold with \dim \mathrm{M} = n \in \mathbb{N}
used throughout the section. Let \mathrm{TM}
and \mathrm{T^*M}
denote the tangent and cotangent bundle, V
and V^*
the fiber and dual fiber bundle and \mathscr{B}
the tensor fiber bundle.
Definition 1: a linear connection on the fiber bundle
\mathscr{B}
is a map
\nabla: \Gamma(\mathrm{TM}) \times \Gamma(\mathscr{B}) \to \Gamma(\mathscr{B}): (\mathbf{v}, \mathbf{T}) \mapsto \nabla_\mathbf{v} \mathbf{T},
satisfying the following properties, if
f,g \in C^\infty(\mathrm{M})
,\mathbf{v} \in \Gamma(\mathrm{TM})
and\mathbf{T}, \mathbf{S} \in \Gamma(\mathscr{B})
then
\nabla_{f\mathbf{v}} \mathbf{T} = f \nabla_\mathbf{v} \mathbf{T}
\nabla_\mathbf{v} (f \mathbf{T} + g \mathbf{S}) = (\nabla_\mathbf{v} f) \mathbf{T} + f \nabla_\mathbf{v} \mathbf{T} + (\nabla_\mathbf{v} g) \mathbf{S} + g \nabla_{\mathbf{v}} \mathbf{S}
,\nabla_\mathbf{v} f = \mathbf{v} f = \mathbf{k}(df, \mathbf{v})
.
From property 3 it becomes clear that \nabla_\mathbf{v}
is an analogue of a directional derivative. The linear connection can also be defined in terms of the cotangent bundle and the dual fiber bundle.
Covariant derivative
Definition 2: let
\mathbf{v} = v^i \mathbf{e}_i\in \Gamma(\mathscr{B})
then the covariant derivative on\mathbf{v}
is defined as
D_k \mathbf{v} \overset{\text{def}}= \nabla_{\partial_k} \mathbf{v} = (\partial_k v^i) \mathbf{e}i + v^i \Gamma^j{ik} \mathbf{e}j = (\partial_k v^i + \Gamma^i{jk} v^j)\mathbf{e}_i,
with formally
\mathbf{k}(\mathbf{\hat e}^j, \nabla_{\partial_k} \mathbf{e}_i) = \Gamma^j_{ik}
the linear connection symbols, in this case\nabla_{\partial_k} \mathbf{e}_i = \Gamma^j_{ik} \mathbf{e}_j
.
The covariant derivative can thus be seen as a linear connection for which only the basis is used of the tangent vector. The covariant derivative can also be applied on higher, mixed rank tensors \mathbf{T} = T^{ij}_k \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k \in \Gamma(\mathscr{B})
which obtains
D_l \mathbf{T} = (\partial_l T^{ij}_k) \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k + T^{ij}k (\Gamma{il}^m\mathbf{e}_m) \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k + T^{ij}_k \mathbf{e}i \otimes (\Gamma^m{jl} \mathbf{e}_m) \otimes \mathbf{\hat e}^k + T^{ij}_k \mathbf{e}_i \otimes \mathbf{e}j \otimes (\hat \Gamma^k{ml} \mathbf{\hat e}^m),
with the dual linear connection symbols given by \mathbf{k}(\nabla_{\partial_k} \mathbf{\hat e}^i, \mathbf{e}_j) = \hat \Gamma^j_{ik}
with \nabla_{\partial_k} \mathbf{\hat e}^i = \hat \Gamma^j_{ik} \mathbf{\hat e}^j
. We then have the following proposition such that we can simplify the above expression.
Proposition 1: let
\Gamma^j_{ik}
be the linear connection symbols of a covariant derivative and let\hat \Gamma^j_{ik}
be the dual linear connection symbols given by\mathbf{k}(\nabla_{\partial_k} \mathbf{\hat e}^i, \mathbf{e}_j) = \hat \Gamma^j_{ik}
, then we have that
\hat \Gamma^j_{ik} = - \Gamma^j_{ik},
for all
(i,j,k) \in \mathbb{N}^3
.
??? note "Proof:"
Will be added later.
With the result of proposition 1 we may write
D_l \mathbf{T} = (\partial_l T^{ij}k + \Gamma{ml}^i T^{mj}k + \Gamma{ml}^j T^{im}k - \Gamma{kl}^m T^{ij}_m) \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k.
Transformation of linear connection symbols
Will be added later.
Parallel transport
Definition 3: let
\mathbf{v} \in \Gamma(\mathrm{TM})
, then parallel transport of\mathbf{v}
occurs along the manifold\mathrm{M}
when
D_k \mathbf{v} = \mathbf{0}.
For example, a parameterised vector field \mathbf{v}: x(t) \mapsto \mathbf{v}(x(t)) \in \Gamma(\mathrm{TM})
is transported parallel if
D_t \mathbf{v} = (\partial_k v^i) \dot x^k \partial_i + \Gamma^i_{jk} v^j \partial_i = \mathbf{0},
so (\partial_k v^i) \dot x^k + \Gamma^i_{jk} v^j = 0
Contravariant derivative
Will be added later.