Added determinants to linear algebra section.
This commit is contained in:
parent
cbc14ab42a
commit
0d1de9a6aa
2 changed files with 95 additions and 0 deletions
|
@ -85,6 +85,7 @@ nav:
|
||||||
- 'Matrix arithmetic': mathematics/linear-algebra/matrices/matrix-arithmetic.md
|
- 'Matrix arithmetic': mathematics/linear-algebra/matrices/matrix-arithmetic.md
|
||||||
- 'Matrix algebra': mathematics/linear-algebra/matrices/matrix-algebra.md
|
- 'Matrix algebra': mathematics/linear-algebra/matrices/matrix-algebra.md
|
||||||
- 'Elementary matrices': mathematics/linear-algebra/matrices/elementary-matrices.md
|
- 'Elementary matrices': mathematics/linear-algebra/matrices/elementary-matrices.md
|
||||||
|
- 'Determinants': mathematics/linear-algebra/determinants.md
|
||||||
- 'Calculus':
|
- 'Calculus':
|
||||||
- 'Limits': mathematics/calculus/limits.md
|
- 'Limits': mathematics/calculus/limits.md
|
||||||
- 'Continuity': mathematics/calculus/continuity.md
|
- 'Continuity': mathematics/calculus/continuity.md
|
||||||
|
|
94
docs/en/mathematics/linear-algebra/determinants.md
Normal file
94
docs/en/mathematics/linear-algebra/determinants.md
Normal file
|
@ -0,0 +1,94 @@
|
||||||
|
# Determinants
|
||||||
|
|
||||||
|
## Definition
|
||||||
|
|
||||||
|
With each $n \times n$ matrix $A$ with $n \in \mathbb{N}$ it is possible to associate a scalar, the determinant of $A$ denoted by $\det (A)$ or $|A|$.
|
||||||
|
|
||||||
|
> *Definition*: let $A = (a_{ij})$ be an $n \times n$ matrix and let $M_{ij}$ denote the $(n-1) \times (n-1)$ matrix obtained from $A$ by deleting the row and column containing $a_{ij}$ with $n \in \mathbb{N}$ and $(i,j) \in \{1, \dots, n\} \times \{1, \dots, n\}$. The determinant of $M_{ij}$ is called the **minor** of $a_{ij}$. We define the **cofactor** of $A_{ij}$ of $a_{ij}$ by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> A_{ij} = (-1)^{i+j} \det(M_{ij}).
|
||||||
|
> $$
|
||||||
|
|
||||||
|
This definition is necessary to formulate a definition for the determinant, as may be observed below.
|
||||||
|
|
||||||
|
> *Definition*: the **determinant** of an $n \times n$ matrix $A$ with $n \in \mathbb{N}$, denoted by $\det (A)$ or $|A|$ is a scalar associated with the matrix $A$ that is defined inductively as
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \det (A) = \begin{cases}a_{11} &\text{ if } n = 1 \\ a_{11} A_{11} + a_{12} A_{12} + \dots + a_{1n} A_{1n} &\text{ if } n > 1\end{cases}
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> where
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> A_{1j} = (-1)^{1+j} \det (M_{1j})
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> with $j \in \{1, \dots, n\}$ are the cofactors associated with the entries in the first row of $A$.
|
||||||
|
|
||||||
|
<br>
|
||||||
|
|
||||||
|
> *Theorem*: if $A$ is an $n \times n$ matrix with $n \in \mathbb{N} \backslash \{1\}$ then $\det(A)$ cam be expressed as a cofactor expansion using any row or column of $A$.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
We then have for a $n \times n$ matrix $A$ with $n \in \mathbb{N} \backslash \{1\}$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\det(A) &= a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}, \\
|
||||||
|
&= a_{1j} A_{1j} + a_{2j} A_{2j} + \dots + a_{nj} A_{nj},
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
with $i,j \in \mathbb{N}$.
|
||||||
|
|
||||||
|
For example, the determinant of a $4 \times 4$ matrix $A$ given by
|
||||||
|
|
||||||
|
$$
|
||||||
|
A = \begin{pmatrix} 0 & 2 & 3 & 0\\ 0 & 4 & 5 & 0\\ 0 & 1 & 0 & 3\\ 2 & 0 & 1 & 3\end{pmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
may be determined using the definition and the theorem above
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A) = 2 \cdot (-1)^5 \det\begin{pmatrix} 2 & 3 & 0\\ 4 & 5 & 0\\ 1 & 0 & 3\end{pmatrix} = -2 \cdot 3 \cdot (-1)^6 \det\begin{pmatrix} 2 & 3 \\ 4 & 5\end{pmatrix} = 12.
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Properties of determinants
|
||||||
|
|
||||||
|
> *Theorem*: if $A$ is an $n \times n$ matrix then $\det (A^T) = \det (A)$.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
It may be observed that the result holds for $n=1$. Assume that the results holds for all $k \times k$ matrices and that $A$ is a $(k+1) \times (k+1)$ matrix for some $k \in \mathbb{N}$. Expanding $\det (A)$ along the first row of $A$ obtains
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + \dots + (-1)^{k+2} a_{1(k+1)} \det(M_{1(k+1)}),
|
||||||
|
$$
|
||||||
|
|
||||||
|
since the minors are all $k \times k$ matrices it follows from the principle of natural induction that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A) = a_{11} \det(M_{11}^T) - a_{12} \det(M_{12}^T) + \dots + (-1)^{k+2} a_{1(k+1)} \det(M_{1(k+1)}^T).
|
||||||
|
$$
|
||||||
|
|
||||||
|
The right hand side of the above equation is the expansion by minors of $\det(A^T)$ using the first column of $A^T$, therefore $\det(A^T) = \det(A)$.
|
||||||
|
|
||||||
|
> *Theorem*: if $A$ is an $n \times n$ triangular matrix with $n \in \mathbb{N}$, then the determinant of $A$ equals the product of the diagonal elements of $A$.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
> *Theorem*: let $A$ be an $n \times n$ matrix
|
||||||
|
>
|
||||||
|
> 1. if $A$ has a row or column consisting entirely of zeros, then $\det(A) = 0$.
|
||||||
|
> 2. if $A$ has two identical rows or two identical columns, then $\det(A) = 0$.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
Loading…
Reference in a new issue