1
0
Fork 0

Split up the first section into several smaller sections.

This commit is contained in:
Luc Bijl 2024-05-23 16:25:18 +02:00
parent 77681b910e
commit 305d2a6151
6 changed files with 254 additions and 191 deletions

View file

@ -97,6 +97,8 @@ nav:
- 'Tensor symmetries': mathematics/linear-algebra/tensors/tensor-symmetries.md - 'Tensor symmetries': mathematics/linear-algebra/tensors/tensor-symmetries.md
- 'Volume forms': mathematics/linear-algebra/tensors/volume-forms.md - 'Volume forms': mathematics/linear-algebra/tensors/volume-forms.md
- 'Tensor transformations': mathematics/linear-algebra/tensors/tensor-transformations.md - 'Tensor transformations': mathematics/linear-algebra/tensors/tensor-transformations.md
- 'Topology':
- 'Fiber bundles': mathematics/topology/fiber-bundles.md
- 'Calculus': - 'Calculus':
- 'Limits': mathematics/calculus/limits.md - 'Limits': mathematics/calculus/limits.md
- 'Continuity': mathematics/calculus/continuity.md - 'Continuity': mathematics/calculus/continuity.md
@ -125,6 +127,8 @@ nav:
- 'The Laplace transform': mathematics/ordinary-differential-equations/laplace-transform.md - 'The Laplace transform': mathematics/ordinary-differential-equations/laplace-transform.md
- 'Differential geometry': - 'Differential geometry':
- 'Differential manifolds': mathematics/differential-geometry/differential-manifolds.md - 'Differential manifolds': mathematics/differential-geometry/differential-manifolds.md
- 'Tangent spaces': mathematics/differential-geometry/tangent-spaces.md
- 'Transformations': mathematics/differential-geometry/transformations.md
- 'Linear connections': mathematics/differential-geometry/linear-connections.md - 'Linear connections': mathematics/differential-geometry/linear-connections.md
- 'Derivatives': mathematics/differential-geometry/derivatives.md - 'Derivatives': mathematics/differential-geometry/derivatives.md
- 'Torsion': mathematics/differential-geometry/torsion.md - 'Torsion': mathematics/differential-geometry/torsion.md

View file

@ -1,6 +1,6 @@
# Differential manifolds # Differential manifolds
In the following sections we make use of the Einstein summation convention introduced in [vector analysis](/en/physics/mathematical-physics/vector-analysis/curvilinear-coordinates/) and $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}.$ In the following sections of differential geometry we make use of the Einstein summation convention introduced in [vector analysis](/en/physics/mathematical-physics/vector-analysis/curvilinear-coordinates/) and $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}.$
## Definition ## Definition
@ -16,9 +16,9 @@ Differential geometry is concerned with *differential manifolds*, smooth continu
The last axiom ensures that any chart is tacitly assumed to be already contained in the atlas. The last axiom ensures that any chart is tacitly assumed to be already contained in the atlas.
## Transformations ## Coordinate transformations
> *Definition 2*: let $p,q \in \mathrm{M}$ be points on the differential manifold and let $\psi: \mathscr{D}(\psi) \to\mathrm{M}: p \mapsto \psi(p) \overset{\text{def}}{=} q$ be a **transformation** on the manifold, we define two diffeomorphisms > *Definition 2*: let $p,q \in \mathrm{M}$ be points on the differential manifold and let $\psi: \mathscr{D}(\psi) \to\mathrm{M}: p \mapsto \psi(p) \overset{\text{def}}{=} q$ be a **transformation** from $p$ to $q$ on the manifold, we define two diffeomorphisms
> >
> $$ > $$
> \phi_\alpha: \mathscr{D}(\phi_\alpha) \to \mathscr{R}(\phi_\alpha): p \mapsto \phi_\alpha(p) \overset{\text{def}}{=} x, > \phi_\alpha: \mathscr{D}(\phi_\alpha) \to \mathscr{R}(\phi_\alpha): p \mapsto \phi_\alpha(p) \overset{\text{def}}{=} x,
@ -38,191 +38,4 @@ The last axiom ensures that any chart is tacitly assumed to be already contained
To clarify the definitions, a passive transformation corresponds only to a descriptive transformation. Whereas an active transformation corresponds to a transformation on the manifold $M$. To clarify the definitions, a passive transformation corresponds only to a descriptive transformation. Whereas an active transformation corresponds to a transformation on the manifold $M$.
A passive transformation may also be given directly by $\phi_\beta \circ \phi_\alpha: x \mapsto y$ since $\psi = \mathrm{id}$ in this case. Note that the definitions could also have been given by the inverse as the transformations are all diffeomorphisms. A passive transformation may also be given directly by $\phi_\beta \circ \phi_\alpha: x \mapsto y$ since $\psi = \mathrm{id}$ in this case. Note that the definitions could also have been given by the inverse as the transformations are all diffeomorphisms.
## Fiber bundles
(This subsection should probably be moved to a more general setting of manifolds.)
> *Definition 3*: a **fiber** $V_x$ at a point $x \in \mathrm{M}$ on a manifold is a finite dimensional vector space. With the collection of fibers $V_x$ for all $x \in \mathrm{M}$ define the **fiber bundle** as
>
> $$
> V = \bigcup_{x \in \mathrm{M}} V_x.
> $$
Then by definition we have the projection map $\pi$ given by
$$
\pi: V \to\mathrm{M}: (x,\mathbf{v}) \mapsto \pi(x, \mathbf{v}) \overset{\text{def}}{=} x,
$$
and its inverse
$$
\pi^{-1}:\mathrm{M} \to V: x \mapsto \pi(x) \overset{\text{def}}{=} V_x.
$$
Similarly, a dual fiber $V_x^*$ may be defined for $x \in \mathrm{M}$, with its fiber bundle defined by
$$
V^* = \bigcup_{x \in \mathrm{M}} V_x^*.
$$
> *Definition 4*: a **tensor fiber** $\mathscr{B}_x$ at a point $x \in \mathrm{M}$ on a manifold is defined as
>
> $$
> \mathscr{B}_x = \bigcup_{p,q \in \mathbb{N}} \mathscr{T}^p_q(V_x).
> $$
>
> With the collection of tensor fibers $\mathscr{B}_x$ for all $x \in \mathrm{M}$ define the **tensor fiber bundle** as
>
> $$
> \mathscr{B} = \bigcup_{x \in \mathrm{M}} \mathscr{B}_x.
> $$
Then for a point $x \in \mathrm{M}$ we have a tensor $\mathbf{T} \in \mathscr{B}_x$ such that
$$
\mathbf{T} = T^{ij}_k \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k,
$$
with $T^{ij}_k \in \mathbb{K}$ holors of $\mathbf{T}$. Furthermore, $\{\mathbf{e}_i\}_{i=1}^n$ a basis of $V_x$ and $\{\mathbf{\hat e}^i\}_{i=1}^n$ a basis of $V_x^*$.
> *Definition 5*: a tensor field $\mathbf{T}$ on a manifold $M$ is a [section]()
>
> $$
> \mathbf{T} \in \Gamma(\mathrm{M}, \mathscr{B}),
> $$
>
> of the tensor fiber bundle $\mathscr{B}$.
Therefore, a tensor field assigns a tensor fiber (or tensor) to each point on a section of the manifold. These tensors may vary smoothly along the section of the manifold.
## Tangent bundles
> *Definition 6*: let $f \in C^{\infty}(\mathrm{M})$ with $C^{\infty}$ the class of [smooth functions]() and $M$ a differential manifold. A derivation of $f$ at $x \in \mathrm{M}$ is defined as a linear map $\mathbf{v}_x: C^\infty(\mathrm{M}) \to \mathbb{K}$ that satisfies
>
> $$
> \forall f,g \in C^{\infty}(\mathrm{M}): \mathbf{v}_x(f g) = (\mathbf{v}_xf) g + f (\mathbf{v}_x g).
> $$
>
> Let $\mathrm{T}_x\mathrm{M}$ be the set of all derivations at $x$ such that $\mathbf{v}_x \in \mathrm{T}_x\mathrm{M}$. With $\mathrm{T}_x\mathrm{M}$ denoted as the **tangent space** at $x$.
We may think of the tangent space at a point $x \in \mathrm{M}$ as a space attached to $x$ on the differential manifold $M$.
> *Theorem 1*: let $M$ be a differential manifold and let $x \in \mathrm{M}$, the tangent space $\mathrm{T}_x\mathrm{M}$ is a vector space.
??? note "*Proof*:"
Will be added later.
Thus, the tangent space is a vector space attached to $x \in \mathrm{M}$ on the differential manifold. It follows that its vectors have interesting properties.
> *Theorem 2*: let $M$ be a differential manifold, let $x \in \mathrm{M}$ and let $\mathbf{v}_x \in \mathrm{T}_x\mathrm{M}$, then we have that
>
> $$
> \forall f \in C^{\infty}(\mathrm{M}): \mathbf{v}_x f = v^i \partial_i f(x),
> $$
>
> such that $\mathbf{v}_x = v^i \partial_i \in \mathrm{T}_x\mathrm{M}$ is denoted as a **tangent vector** in the tangent space $\mathrm{T}_x\mathrm{M}$.
??? note "*Proof*:"
Will be added later.
Theorem 2 adds the notion of tangent vectors to the explanation of the tangent space. The tangent space at a point on the manifold thus represents the space of tangent vectors.
> *Proposition 1*: let $M$ be a differential manifold of $\dim\mathrm{M} = n \in \mathbb{N}$. The tangent space $\mathrm{T}_x\mathrm{M}$ has dimension $n$ such that
>
> $$
> \forall x \in \mathrm{M}: \dim \mathrm{T}_x\mathrm{M} = \dim\mathrm{M}
> $$
>
> and is span by the vector basis $\{\partial_i\}_{i=1}^n$.
??? note "*Proof*:"
Will be added later.
Proposition 1 states that the tangent space is of the same dimension as the manifold and its basis are partial derivative operators. In the context of the [covariant basis](), this definition of the basis leaves out the coordinate map, but is in fact equivalent to the covariant basis.
As a last step in the explanation, we may think of the 2 dimensional surface of a sphere, which may define a differential manifold $M$. The tangent space at a point $x \in \mathrm{M}$ on the surface of the sphere may then be compared to the tangent plane to the sphere attached at point $x \in \mathrm{M}$. The catch is that the 3 dimensional space necessary to understand this construction exists only in our imagination and not in the mathematical construct.
> *Definition 7*: let $M$ be a differential manifold, the collection of tangent spaces $\mathrm{T}_x\mathrm{M}$ for all $x \in \mathrm{M}$ define the **tangent bundle** as
>
> $$
> \mathrm{TM} = \bigcup_{x \in \mathrm{M}} \mathrm{T}_x\mathrm{M}.
> $$
In particular, we may think of the tangent bundle $\mathrm{TM}$ as a subspace $\mathrm{TM} \subset V$ of the vector bundle $V$ for a differential manifold. With the special properties given in theorem 2 and proposition 1.
The connection of each tangent vector to its base point may be formalised with the projection map $\pi$ which in this case is given by
$$
\pi: \mathrm{TM} \to\mathrm{M}: (x, \mathbf{v}) \mapsto \pi(x, \mathbf{v}) \overset{\text{def}}{=} x,
$$
and its inverse
$$
\pi^{-1}:\mathrm{M} \to \mathrm{TM}: x \mapsto \pi^{-1}(x) \overset{\text{def}}{=} \mathrm{T}_x\mathrm{M}.
$$
> *Definition 8*: a vector field $\mathbf{v}$ on a differential manifold $M$ is a section
>
> $$
> \mathbf{v} \in \Gamma(\mathrm{TM}),
> $$
>
> of the tangent bundle $\mathrm{TM}$.
## Cotangent bundles
> *Definition 9*: let $M$ be a differential manifold and $\mathrm{T}_x\mathrm{M}$ the tangent space at $x \in \mathrm{M}$. We define the **cotangent space** $\mathrm{T}_x^*\mathrm{M}$ as the dual space of $\mathrm{T}_x\mathrm{M}$
>
> $$
> \mathrm{T}_x^*\mathrm{M} = (\mathrm{T}_x\mathrm{M})^*.
> $$
>
> Then every element $\bm{\omega}_x \in \mathrm{T}_x^*\mathrm{M}$ is a linear map $\bm{\omega}_x: \mathrm{T}_x\mathrm{M} \to \mathbb{K}$ denoted as the **cotangent vector**.
This definition is a logical consequence of the notion of the [dual vector space](). It then also follows that the dual cotangent space is isomorphic to the tangent space at a point $x \in \mathrm{M}$.
> *Theorem 3*: let $\mathrm{M}$ be a differential manifold of $\dim \mathrm{M} = n \in \mathbb{N}$, then we have that for every $x \in \mathrm{M}$ the basis $\{dx^i\}_{i=1}^n$ of $\mathrm{T}_x^*\mathrm{M}$ is uniquely determined by
>
> $$
> dx^i(\partial_j) = \delta^i_j,
> $$
>
> for each basis $\{\partial_j\}_{j=1}^n$ in $\mathrm{T}_x\mathrm{M}$.
??? note "*Proof*:"
The proof follows directly from theorem 1 in [dual vector spaces]().
The choice of $dx^i$ can be explained by taking the differential $df = \partial_i f dx^i \in \mathrm{T}_x^*\mathrm{M}$ with $f \in C^\infty(\mathrm{M})$. Then if we take
$$
\mathbf{k}_x(df, \mathbf{v}) = \mathbf{k}(\partial_i f dx^i, v^j \partial_j) = v^j \partial_i f \mathbf{k}(dx^i, \partial_j) = v^j \partial_i f \delta^i_j = v^i \partial_i f = \mathbf{v} f,
$$
with $\mathbf{k}_x: \mathrm{T}_x^*\mathrm{M} \times \mathrm{T}_x\mathrm{M} \to \mathbb{K}$ the Kronecker tensor at $x \in \mathrm{M}$. Which shows that defining the basis of the cotangent space as differentials corresponds with respect to the basis of the tangent space.
So, a cotangent vector $\bm{\omega}_x \in \mathrm{T}_x^*\mathrm{M}$ may be decomposed into
$$
\bm{\omega}_x = \omega_i dx^i.
$$
## Push forward and pull back
> *Definition 10*: let $\mathrm{M}, \mathrm{N}$ be two differential manifolds with $\dim \mathrm{N} \geq \dim \mathrm{M}$ and let $\psi: \mathrm{M} \to \mathrm{N}$ be the diffeomorphism between the manifolds. Then we define the **pull back** $\psi^*$ and **push forward** $\psi_*$ operators, such that for $\mathbf{v} \in \mathrm{T}_x \mathrm{M}$ and $\bm{\omega} \in \mathrm{T}_{\psi(x)}^* \mathrm{M}$ we have
>
> $$
> \mathbf{k}_x(\psi^* \bm{\omega}, \mathbf{v}) = \mathbf{k}_{\psi(x)}(\bm{\omega}, \psi_* \mathbf{v}),
> $$
>
> for all $x \in \mathrm{M}$.
Which indicates the proper separation between the elements of both spaces.

View file

@ -0,0 +1,18 @@
# Linear connections
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle.
> *Definition 1*: a **linear connection** on the fiber bundle $\mathscr{B}$ is a map
>
> $$
> \nabla: \Gamma(\mathrm{TM}) \times \Gamma(\mathscr{B}) \to \Gamma(\mathscr{B}): (\mathbf{v}, \mathbf{T}) \mapsto \nabla_\mathbf{v} \mathbf{T},
> $$
>
> satisfying the following properties, if $f,g \in C^\infty(\mathrm{M})$, $\mathbf{v} \in \mathrm{TM}$ and $\mathbf{T}, \mathbf{S} \in \mathscr{B}$ then
>
> 1. $\nabla_{f\mathbf{v}} \mathbf{T} = f \nabla_\mathbf{v} \mathbf{T}$
> 2. $\nabla_\mathbf{v} (f \mathbf{T} + g \mathbf{S}) = (\nabla_\mathbf{v} f) \mathbf{T} + f \nabla_\mathbf{v} \mathbf{T} + (\nabla_\mathbf{v} g) \mathbf{S} + g \nabla_{\mathbf{v}} \mathbf{S}$,
> 3. $\nabla_\mathbf{v} f = \mathbf{v} f = \mathbf{k}(df, \mathbf{v})$.
From property 3 it becomes clear that $\nabla_\mathbf{v}$ is an analogue of a directional derivative.

View file

@ -0,0 +1,136 @@
# Tangent spaces
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section.
## Definition
> *Definition 1*: let $f \in C^{\infty}(\mathrm{M})$ with $C^{\infty}$ the class of [smooth functions]() and $M$ a differential manifold. A derivation of $f$ at $x \in \mathrm{M}$ is defined as a linear map $\mathbf{v}_x: C^\infty(\mathrm{M}) \to \mathbb{K}$ that satisfies
>
> $$
> \forall f,g \in C^{\infty}(\mathrm{M}): \mathbf{v}_x(f g) = (\mathbf{v}_xf) g + f (\mathbf{v}_x g).
> $$
>
> Let $\mathrm{T}_x\mathrm{M}$ be the set of all derivations at $x$ such that $\mathbf{v}_x \in \mathrm{T}_x\mathrm{M}$. With $\mathrm{T}_x\mathrm{M}$ denoted as the **tangent space** at $x$.
We may think of the tangent space at a point $x \in \mathrm{M}$ as a space attached to $x$ on the differential manifold $M$.
## Properties of tangent spaces
> *Theorem 1*: let $M$ be a differential manifold and let $x \in \mathrm{M}$, the tangent space $\mathrm{T}_x\mathrm{M}$ is a vector space.
??? note "*Proof*:"
Will be added later.
Thus, the tangent space is a vector space attached to $x \in \mathrm{M}$ on the differential manifold. It follows that its vectors have interesting properties.
> *Theorem 2*: let $M$ be a differential manifold, let $x \in \mathrm{M}$ and let $\mathbf{v}_x \in \mathrm{T}_x\mathrm{M}$, then we have that
>
> $$
> \forall f \in C^{\infty}(\mathrm{M}): \mathbf{v}_x f = v^i \partial_i f(x),
> $$
>
> such that $\mathbf{v}_x = v^i \partial_i \in \mathrm{T}_x\mathrm{M}$ is denoted as a **tangent vector** in the tangent space $\mathrm{T}_x\mathrm{M}$.
??? note "*Proof*:"
Will be added later.
Theorem 2 adds the notion of tangent vectors to the explanation of the tangent space. The tangent space at a point on the manifold thus represents the space of tangent vectors.
> *Proposition 1*: let $M$ be a differential manifold of $\dim\mathrm{M} = n \in \mathbb{N}$. The tangent space $\mathrm{T}_x\mathrm{M}$ has dimension $n$ such that
>
> $$
> \forall x \in \mathrm{M}: \dim \mathrm{T}_x\mathrm{M} = \dim\mathrm{M}
> $$
>
> and is span by the vector basis $\{\partial_i\}_{i=1}^n$.
??? note "*Proof*:"
Will be added later.
Proposition 1 states that the tangent space is of the same dimension as the manifold and its basis are partial derivative operators. In the context of the [covariant basis](), this definition of the basis leaves out the coordinate map, but is in fact equivalent to the covariant basis.
As a last step in the explanation, we may think of the 2 dimensional surface of a sphere, which may define a differential manifold $M$. The tangent space at a point $x \in \mathrm{M}$ on the surface of the sphere may then be compared to the tangent plane to the sphere attached at point $x \in \mathrm{M}$. The catch is that the 3 dimensional space necessary to understand this construction exists only in our imagination and not in the mathematical construct.
## Tangent bundle
> *Definition 2*: let $M$ be a differential manifold, the collection of tangent spaces $\mathrm{T}_x\mathrm{M}$ for all $x \in \mathrm{M}$ define the **tangent bundle** as
>
> $$
> \mathrm{TM} = \bigcup_{x \in \mathrm{M}} \mathrm{T}_x\mathrm{M}.
> $$
In particular, we may think of the tangent bundle $\mathrm{TM}$ as a subspace $\mathrm{TM} \subset V$ of the fiber bundle $V$ for a differential manifold. With the special properties given in theorem 2 and proposition 1.
The connection of each tangent vector to its base point may be formalised with the projection map $\pi$ which in this case is given by
$$
\pi: \mathrm{TM} \to\mathrm{M}: (x, \mathbf{v}) \mapsto \pi(x, \mathbf{v}) \overset{\text{def}}{=} x,
$$
and its inverse
$$
\pi^{-1}:\mathrm{M} \to \mathrm{TM}: x \mapsto \pi^{-1}(x) \overset{\text{def}}{=} \mathrm{T}_x\mathrm{M}.
$$
> *Definition 3*: a vector field $\mathbf{v}$ on a differential manifold $M$ is a section
>
> $$
> \mathbf{v} \in \Gamma(\mathrm{TM}),
> $$
>
> of the tangent bundle $\mathrm{TM}$.
## Cotangent spaces
> *Definition 4*: let $M$ be a differential manifold and $\mathrm{T}_x\mathrm{M}$ the tangent space at $x \in \mathrm{M}$. We define the **cotangent space** $\mathrm{T}_x^*\mathrm{M}$ as the dual space of $\mathrm{T}_x\mathrm{M}$
>
> $$
> \mathrm{T}_x^*\mathrm{M} = (\mathrm{T}_x\mathrm{M})^*.
> $$
>
> Then every element $\bm{\omega}_x \in \mathrm{T}_x^*\mathrm{M}$ is a linear map $\bm{\omega}_x: \mathrm{T}_x\mathrm{M} \to \mathbb{K}$ denoted as the **cotangent vector**.
This definition is a logical consequence of the notion of the [dual vector space](). It then also follows that the dual cotangent space is isomorphic to the tangent space at a point $x \in \mathrm{M}$.
> *Theorem 3*: let $\mathrm{M}$ be a differential manifold of $\dim \mathrm{M} = n \in \mathbb{N}$, then we have that for every $x \in \mathrm{M}$ the basis $\{dx^i\}_{i=1}^n$ of $\mathrm{T}_x^*\mathrm{M}$ is uniquely determined by
>
> $$
> dx^i(\partial_j) = \delta^i_j,
> $$
>
> for each basis $\{\partial_j\}_{j=1}^n$ in $\mathrm{T}_x\mathrm{M}$.
??? note "*Proof*:"
The proof follows directly from theorem 1 in [dual vector spaces]().
The choice of $dx^i$ can be explained by taking the differential $df = \partial_i f dx^i \in \mathrm{T}_x^*\mathrm{M}$ with $f \in C^\infty(\mathrm{M})$. Then if we take
$$
\mathbf{k}_x(df, \mathbf{v}) = \mathbf{k}(\partial_i f dx^i, v^j \partial_j) = v^j \partial_i f \mathbf{k}(dx^i, \partial_j) = v^j \partial_i f \delta^i_j = v^i \partial_i f = \mathbf{v} f,
$$
with $\mathbf{k}_x: \mathrm{T}_x^*\mathrm{M} \times \mathrm{T}_x\mathrm{M} \to \mathbb{K}$ the Kronecker tensor at $x \in \mathrm{M}$. Which shows that defining the basis of the cotangent space as differentials corresponds with respect to the basis of the tangent space.
So, a cotangent vector $\bm{\omega}_x \in \mathrm{T}_x^*\mathrm{M}$ may be decomposed into
$$
\bm{\omega}_x = \omega_i dx^i.
$$
In the context of the [contravariant basis](), this definition of the basis leaves out the coordinate map, but is in fact equivalent to the contravariant basis.
## Cotangent bundle
> *Definition 5*: let $M$ be a differential manifold, the collection of cotangent spaces $\mathrm{T}_x^*\mathrm{M}$ for all $x \in \mathrm{M}$ define the **cotangent bundle** as
>
> $$
> \mathrm{T^*M} = \bigcup_{x \in \mathrm{M}} \mathrm{T}_x^*\mathrm{M}.
> $$
Thus, we may think of the cotangent bundle $\mathrm{T^*M}$ as a subspace $\mathrm{T^*M} \subset V^*$ of the dual fiber bundle $V^*$ for a differential manifold.

View file

@ -0,0 +1,35 @@
# Transformations
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle.
## Push forward and pull back
> *Definition 1*: let $\mathrm{M}, \mathrm{N}$ be two differential manifolds with $\dim \mathrm{N} \geq \dim \mathrm{M}$ and let $\psi: \mathrm{M} \to \mathrm{N}$ be the diffeomorphism between the manifolds. Then we define the **pull back** $\psi^*$ and **push forward** $\psi_*$ operators, such that for $\mathbf{v} \in \mathrm{T}_x \mathrm{M}$ and $\bm{\omega} \in \mathrm{T}_{\psi(x)}^* \mathrm{M}$ we have
>
> $$
> \mathbf{k}_x(\psi^* \bm{\omega}, \mathbf{v}) = \mathbf{k}_{\psi(x)}(\bm{\omega}, \psi_* \mathbf{v}),
> $$
>
> for all $x \in \mathrm{M}$.
Which indicates the proper separation between the elements of both spaces.
## Basis transformation
Let $\psi: \mathscr{D}(\mathrm{M}) \to \mathrm{M}: x \mapsto \psi(x) \overset{\text{def}}{=} \overline{x}$ be an active coordinate transformation from a point $x$ to a point $\overline{x}$ on $\mathrm{M}$. Then we have a basis $\{\partial_i\}_{i=1}^n \subset \mathrm{T}_x\mathrm{M}$ for the tangent space $\mathrm{T}_x\mathrm{M}$ at $x$ and a basis $\{\overline{\partial_i}\}_{i=1}^n \subset \mathrm{T}_{\overline{x}}\mathrm{M}$ for the tangent space $\mathrm{T}_{\overline{x}}\mathrm{M}$ at $\overline{x}$. Which are related by
$$
\partial_i = J^j_i \overline{\partial_j} = \partial_i \psi^j(x) \overline{\partial_j},
$$
with $J^j_i = \partial_i \psi^j(x)$ the [Jacobian]() at $x \in \mathrm{M}$. For it to make sense, it helps to change notation to
$$
\frac{\partial}{\partial x_i} = \frac{\partial \overline{x}^j}{\partial x_i} \frac{\partial}{\partial \overline{x}_j} = \frac{\partial \psi^j}{\partial x_i} \frac{\partial}{\partial \overline{x}_j}.
$$
Similarly, we have a basis $\{dx^i\}_{i=1}^n \subset \mathrm{T}_x^*\mathrm{M}$ for the cotangent space $\mathrm{T}_x\mathrm{M}$ at $x$ and a basis $\{d\overline{x}^i\}_{i=1}^n \subset \mathrm{T}_{\overline{x}}^*\mathrm{M}$ for the cotangent space $\mathrm{T}_{\overline{x}}^*\mathrm{M}$ at $\overline{x}$. Which are related by
$$
d\overline{x}^i = J^i_j dx^j = \partial_j \psi^i(x) dx^j.
$$

View file

@ -0,0 +1,57 @@
# Fiber bundles
Let $X$ be a manifold over a field $F$.
> *Definition 1*: a **fiber** $V_x$ at a point $x \in X$ on a manifold is a finite dimensional vector space. With the collection of fibers $V_x$ for all $x \in X$ define the **fiber bundle** as
>
> $$
> V = \bigcup_{x \in X} V_x.
> $$
Then by definition we have the projection map $\pi$ given by
$$
\pi: V \to X: (x,\mathbf{v}) \mapsto \pi(x, \mathbf{v}) \overset{\text{def}}{=} x,
$$
and its inverse
$$
\pi^{-1}: X \to V: x \mapsto \pi(x) \overset{\text{def}}{=} V_x.
$$
Similarly, a dual fiber $V_x^*$ may be defined for $x \in X$, with its fiber bundle defined by
$$
V^* = \bigcup_{x \in X} V_x^*.
$$
> *Definition 2*: a **tensor fiber** $\mathscr{B}_x$ at a point $x \in X$ on a manifold is defined as
>
> $$
> \mathscr{B}_x = \bigcup_{p,q \in \mathbb{N}} \mathscr{T}^p_q(V_x).
> $$
>
> With the collection of tensor fibers $\mathscr{B}_x$ for all $x \in X$ define the **tensor fiber bundle** as
>
> $$
> \mathscr{B} = \bigcup_{x \in X} \mathscr{B}_x.
> $$
Then for a point $x \in X$ we have a tensor $\mathbf{T} \in \mathscr{B}_x$ such that
$$
\mathbf{T} = T^{ij}_k \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k,
$$
with $T^{ij}_k \in \mathbb{K}$ holors of $\mathbf{T}$. Furthermore, we have a basis $\{\mathbf{e}_i\}_{i=1}^n$ of $V_x$ and a basis $\{\mathbf{\hat e}^i\}_{i=1}^n$ of $V_x^*$.
> *Definition 3*: a tensor field $\mathbf{T}$ on a manifold $X$ is a [section]()
>
> $$
> \mathbf{T} \in \Gamma(X, \mathscr{B}),
> $$
>
> of the tensor fiber bundle $\mathscr{B}$.
Therefore, a tensor field assigns a tensor fiber (or tensor) to each point on a section of the manifold. These tensors may vary smoothly along the section of the manifold.