1 KiB
1 KiB
Linear connections
Let \mathrm{M}
be a differential manifold with \dim \mathrm{M} = n \in \mathbb{N}
used throughout the section. Let \mathrm{TM}
and \mathrm{T^*M}
denote the tangent and cotangent bundle.
Definition 1: a linear connection on the fiber bundle
\mathscr{B}
is a map
\nabla: \Gamma(\mathrm{TM}) \times \Gamma(\mathscr{B}) \to \Gamma(\mathscr{B}): (\mathbf{v}, \mathbf{T}) \mapsto \nabla_\mathbf{v} \mathbf{T},
satisfying the following properties, if
f,g \in C^\infty(\mathrm{M})
,\mathbf{v} \in \mathrm{TM}
and\mathbf{T}, \mathbf{S} \in \mathscr{B}
then
\nabla_{f\mathbf{v}} \mathbf{T} = f \nabla_\mathbf{v} \mathbf{T}
\nabla_\mathbf{v} (f \mathbf{T} + g \mathbf{S}) = (\nabla_\mathbf{v} f) \mathbf{T} + f \nabla_\mathbf{v} \mathbf{T} + (\nabla_\mathbf{v} g) \mathbf{S} + g \nabla_{\mathbf{v}} \mathbf{S}
,\nabla_\mathbf{v} f = \mathbf{v} f = \mathbf{k}(df, \mathbf{v})
.
From property 3 it becomes clear that \nabla_\mathbf{v}
is an analogue of a directional derivative.