Finished section polarisation in optics.
This commit is contained in:
parent
fb48e88986
commit
ab7a6adb69
3 changed files with 180 additions and 2 deletions
|
@ -127,7 +127,7 @@ nav:
|
||||||
- 'Geometric optics': physics/electromagnetism/optics/geometric-optics.md
|
- 'Geometric optics': physics/electromagnetism/optics/geometric-optics.md
|
||||||
- 'Interference': physics/electromagnetism/optics/interference.md
|
- 'Interference': physics/electromagnetism/optics/interference.md
|
||||||
- 'Diffraction': physics/electromagnetism/optics/diffraction.md
|
- 'Diffraction': physics/electromagnetism/optics/diffraction.md
|
||||||
- 'Polarization': physics/electromagnetism/optics/polarization.md
|
- 'Polarisation': physics/electromagnetism/optics/polarisation.md
|
||||||
- 'Mathematical physics':
|
- 'Mathematical physics':
|
||||||
- 'Signal analysis':
|
- 'Signal analysis':
|
||||||
- 'Signals': physics/mathematical-physics/signal-analysis/signals.md
|
- 'Signals': physics/mathematical-physics/signal-analysis/signals.md
|
||||||
|
|
179
docs/en/physics/electromagnetism/optics/polarisation.md
Normal file
179
docs/en/physics/electromagnetism/optics/polarisation.md
Normal file
|
@ -0,0 +1,179 @@
|
||||||
|
# Polarisation
|
||||||
|
|
||||||
|
If we consider an electromagnetic wave $\mathbf{E}: \mathbb{R}^2 \to \mathbb{R}^3$ with wavenumber $k \in \mathbb{R}$ and angular frequency $\omega \in \mathbb{R}$ propagating in the positve $z$-direction given by
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathbf{E}(z,t) = \exp i(kz - \omega t + \varphi_1) E_0^{(x)} \mathbf{e}_{(x)} + \exp i(kz - \omega t + \varphi_2) E_0^{(y)}\mathbf{e}_{(y)},
|
||||||
|
$$
|
||||||
|
|
||||||
|
for all $(z,t) \in \mathbb{R}^2$ with $E_0^{(x)}, E_0^{(y)} \in \mathbb{R}$ the magnitude of the wave in the $x$ and $y$ direction. We define $\Delta \varphi = \varphi_2 - \varphi_1$.
|
||||||
|
|
||||||
|
> *Definition*: the electromagnetic wave $\mathbf{E}$ is linear polarised if and only if
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \Delta \varphi = \pi m,
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for all $m \in \mathbb{Z}$.
|
||||||
|
|
||||||
|
With polarisation angle $\theta \in [0, 2\pi)$ given by
|
||||||
|
|
||||||
|
$$
|
||||||
|
\theta = \arctan \Bigg( \frac{\max E_0^{(y)}}{\max E_0^{(x)}} \Bigg).
|
||||||
|
$$
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
> *Definition*: the electromagnetic wave $\mathbf{E}$ is left circular polarised if and only if
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \Delta \varphi = \frac{\pi}{2} \;\land\; E_0^{(x)} = E_0^{(y)},
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> and right circular polarised if and only if
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \Delta \varphi = -\frac{\pi}{2} \;\land\; E_0^{(x)} = E_0^{(y)}.
|
||||||
|
> $$
|
||||||
|
|
||||||
|
For every state in between we have elliptical polarisation with a polarisation angle $\theta \in [0, 2\pi)$ given by
|
||||||
|
|
||||||
|
$$
|
||||||
|
\theta = \frac{1}{2} \arctan \Bigg(\frac{2 E_0^{(x)} E_0^{(y)} \cos \Delta\varphi}{ \big(E_0^{(x)} \big)^2- \big( E_0^{(y)} \big)^2} \Bigg).
|
||||||
|
$$
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
> *Definition*: natural light is defined as light constisting of all linear polarisation states.
|
||||||
|
|
||||||
|
## Linear polarisation
|
||||||
|
|
||||||
|
> *Definition*: a linear polariser selectively removes light that is linearly polarised along a direction perpendicular to its transmission axis.
|
||||||
|
|
||||||
|
We may concretisize this definition by the following statement, considered to be Malus law.
|
||||||
|
|
||||||
|
> *Law*: for a light beam with amplitude $E_0$ incident on a linear polariser the transmitted beam has amplitude $E_0 \cos \theta$ with $\theta \in [0, 2\pi)$ the polarisation angle of the light with respect to the transmission axis. The transmitted irradiance $I: [0, 2\pi) \to \mathbb{R}$ is then given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> I(\theta) = I_0 \cos^2 \theta,
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for all $\theta \in [0, 2\pi)$ with $I_0 \in \mathbb{R}$ the irradiance of the incident light.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
For natural light the average of all angles must be taken, since $\lim_{\theta \to \infty} \cos^2 \theta = \frac{1}{2}$, we have the relation $I = \frac{1}{2} I_0$ for natural light.
|
||||||
|
|
||||||
|
## Birefringence
|
||||||
|
|
||||||
|
Natural light can be polarised in several ways, some are listed below.
|
||||||
|
|
||||||
|
1. Polarisation by absorption of the other component. This can be done with a wiregrid or dichroic materials for smaller wavelengths.
|
||||||
|
2. Polarisation by scattering. Dipole radiation has distinct polarisation depending on the position.
|
||||||
|
3. Polarisation by Brewster angle, which boils down to scattering.
|
||||||
|
4. Polarisation by birefringence, the double refraction of light obtaining two orthogonal components polarised.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
> *Definition*: birefringence is a double refraction in a material (often crystalline) and can be derived from the Fresnel equations without assuming isotropic dielectric properties.
|
||||||
|
|
||||||
|
If isotropic dielectric properties are not assumed it implies that the refractive index may also depend on the polarisation and propgation direction of light.
|
||||||
|
|
||||||
|
Using the properties of birefringence, wave plates (retarders) can be created. They may introduce a phase difference via a speed difference in the polarisation direction.
|
||||||
|
|
||||||
|
* A half-wave plate may introduce a $\Delta \varphi = \pi$ phase difference.
|
||||||
|
* A quarter-wave plate may introduce a $\Delta \varphi = \frac{\pi}{2}$ phase difference.
|
||||||
|
|
||||||
|
## Jones formalism of polarisation
|
||||||
|
|
||||||
|
Jones formalism of polarisation with vectors and matrices cna make it easier to calculate the effect of optical elements such as linear polarizers and wave plates.
|
||||||
|
|
||||||
|
> *Definition*: for an electromagnetic wave $\mathbf{E}: \mathbb{R}^2 \to \mathbb{R}^3$ with wavenumber $k \in \mathbb{R}$ and angular frequency $\omega \in \mathbb{R}$ propagating in the positive $z$-direction given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \mathbf{E}(z,t) = \mathbf{E}_0 \exp i(kz - \omega t),
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for all $(z,t) \in \mathbb{R}^2$. The Jones vector $\mathbf{\tilde E}$ is defined as
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \mathbf{\tilde E} = \mathbf{E}_0,
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> possibly normalized with $\|\mathbf{\tilde E}\| = 1$.
|
||||||
|
|
||||||
|
For linear polarised light under an angle $\theta \in [0, 2\pi)$ the Jones vector $\mathbf{\tilde E}$ is given by
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathbf{\tilde E} = \begin{pmatrix}\cos \theta \\ \sin \theta\end{pmatrix}.
|
||||||
|
$$
|
||||||
|
|
||||||
|
For left circular polarised light the Jones vector $\mathbf{\tilde E}$ is given by
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathbf{\tilde E} = \begin{pmatrix} 1 \\ i \end{pmatrix},
|
||||||
|
$$
|
||||||
|
|
||||||
|
and for right circular polarised light
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathbf{\tilde E} = \begin{pmatrix} 1 \\ -i \end{pmatrix}.
|
||||||
|
$$
|
||||||
|
|
||||||
|
> *Definition*: Jones matrices $M_i$ with $i \in \{1, \dots, n\}$ with $n \in \mathbb{N}$ may be used to model several optical elements on an optical axis, obtaining the transmitted Jones vector $\mathbf{\tilde E}_t$ from the incident Jones vector $\mathbf{\tilde E}_i$ given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \mathbf{\tilde E}_t = M_n \cdots M_1 \mathbf{\tilde E}_i.
|
||||||
|
> $$
|
||||||
|
|
||||||
|
The Jones matrices for several optical elements are now given.
|
||||||
|
|
||||||
|
> *Proposition*: the Jones matrix $M$ of a linear polariser is given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> M = \begin{pmatrix} \cos^2 \theta & \frac{1}{2} \sin 2\theta \\ \frac{1}{2} \sin 2\theta & \sin^2 \theta \end{pmatrix},
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> with $\theta \in [0, 2\pi)$ the transmission axis of the linear polariser.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
<br>
|
||||||
|
|
||||||
|
> *Proposition*: the Jones matrix $M$ of a half-wave plate is given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> M = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix},
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> with $\theta \in [0, 2\pi)$ the fast axis of the half-wave plate.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
<br>
|
||||||
|
|
||||||
|
> *Proposition*: the Jones matrix $M$ of a quarter-wave plate is given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> M = \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & (1 - i) \sin \theta \cos \theta \\ (1 - i) \sin \theta \cos \theta & i(\cos^2 \theta + \sin^2 \theta) \end{pmatrix},
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> with $\theta \in [0, 2\pi)$ the fast axis of the quarter-wave plate.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
||||||
|
|
||||||
|
<br>
|
|
@ -1 +0,0 @@
|
||||||
# Polarization
|
|
Loading…
Reference in a new issue