1
0
Fork 0

Added implicit equations.

This commit is contained in:
Luc Bijl 2023-10-30 16:20:21 +01:00
parent 21e205377f
commit dcd845aae0
2 changed files with 68 additions and 0 deletions

View file

@ -50,6 +50,20 @@ $$
with $\nabla f(\mathbf{a})$ the gradient of $f$. with $\nabla f(\mathbf{a})$ the gradient of $f$.
## Chain rule
*Definition*: let $D \subseteq \mathbb{R}^n$ ($n=2$ for simplicity) and let $f: D \to \mathbb{R}$, also let $g: \mathbb{R} \to \mathbb{R}$ given by
$$
g(t) = f\big(\mathbf{x}(t)\big),
$$
if $f$ is continuously differentiable, then $g$ is differentiable with
$$
g'(t) = \big\langle \nabla f\big(\mathbf{x}(t)\big),\; \mathbf{\dot x}(t) \big\rangle.
$$
## Gradients ## Gradients
*Definition*: at any point $\mathbf{x} \in D$ where the first partial derivatives of $f$ exist, we define the gradient vector $\nabla$ by *Definition*: at any point $\mathbf{x} \in D$ where the first partial derivatives of $f$ exist, we define the gradient vector $\nabla$ by

View file

@ -0,0 +1,54 @@
# Implicit equations
*Theorem*: for $D \subseteq \mathbb{R}^2$ (for simplicty), let $f: D \to \mathbb{R}$ be continuously differentiable and $\mathbf{a} \in D$. Assume
* $f(\mathbf{a}) = 0$,
* $\partial_2 f(\mathbf{a}) \neq 0$, nondegeneracy.
then there exists an $I$ around $a_1$ and an $J$ around $a_2$ such that $\phi: I \to J$ is differentiable and
$$
\forall x \in I, y \in J: f(x,y) = 0 \iff y = \phi(x).
$$
Now calculating $\phi' (x)$ with the chain rule
$$
\begin{align*}
f\big(x,\phi(x)\big) &= 0, \\
\partial_1 f\big(x,\phi(x)\big) + \partial_2 f\big(x,\phi(x)\big) \phi' (x) &= 0,
\end{align*}
$$
and we obtain
$$
\phi' (x) = - \frac{\partial_1 f\big(x,\phi(x)\big)}{\partial_2 f\big(x,\phi(x)\big)}.
$$
*Proof*: will be added later.
## General case
*Theorem*: Let $\mathbf{F}: \mathbb{R}^{n+m} \to \mathbb{R}^m$ given by $F(\mathbf{x},\mathbf{y}) = \mathbf{0}$ with $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. Suppose $\mathbf{F}$ is continuously differentiable and assume $D_2 \mathbf{F}(\mathbf{x},\mathbf{y}) \in \mathbb{R}^{m \times m}$ is nonsingular. Then there exists in neighbourhoods $I$ of $\mathbf{x}$ and $J$ of $\mathbf{y}$ with $I \subseteq \mathbb{R}^n,\; J \subseteq \mathbb{R}^m$, such that $\mathbf{\phi}: I \to J$ is differentiable and
$$
\forall (\mathbf{x},\mathbf{y}) \in I \times J: \mathbf{F}(\mathbf{x},\mathbf{y}) = \mathbf{0} \iff \mathbf{y} = \mathbf{\phi}(\mathbf{x}).
$$
Now calculating $D \mathbf{\phi}(\mathbf{x})$ with the generalized chain rule
$$
\begin{align*}
\mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big) &= \mathbf{0}, \\
D_1 \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big) + D_2 \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big) D \mathbf{\phi}(\mathbf{x}) &= \mathbf{0}, \\
\end{align*}
$$
and we obtain
$$
D \mathbf{\phi}(\mathbf{x}) = - \Big(D_2 \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big) \Big)^{-1} D_1 \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big).
$$
*Proof*: will be added later.