1
0
Fork 0
mathematics-physics-wiki/docs/en/mathematics/multivariable-calculus/implicit-equations.md
2023-10-30 16:20:21 +01:00

2 KiB

Implicit equations

Theorem: for D \subseteq \mathbb{R}^2 (for simplicty), let f: D \to \mathbb{R} be continuously differentiable and \mathbf{a} \in D. Assume

  • f(\mathbf{a}) = 0,
  • \partial_2 f(\mathbf{a}) \neq 0, nondegeneracy.

then there exists an I around a_1 and an J around a_2 such that \phi: I \to J is differentiable and

\forall x \in I, y \in J: f(x,y) = 0 \iff y = \phi(x).

Now calculating \phi' (x) with the chain rule

\begin{align*} f\big(x,\phi(x)\big) &= 0, \ \partial_1 f\big(x,\phi(x)\big) + \partial_2 f\big(x,\phi(x)\big) \phi' (x) &= 0, \end{align*}

and we obtain

\phi' (x) = - \frac{\partial_1 f\big(x,\phi(x)\big)}{\partial_2 f\big(x,\phi(x)\big)}.

Proof: will be added later.

General case

Theorem: Let \mathbf{F}: \mathbb{R}^{n+m} \to \mathbb{R}^m given by F(\mathbf{x},\mathbf{y}) = \mathbf{0} with \mathbf{x} \in \mathbb{R}^n and \mathbf{y} \in \mathbb{R}^m. Suppose \mathbf{F} is continuously differentiable and assume D_2 \mathbf{F}(\mathbf{x},\mathbf{y}) \in \mathbb{R}^{m \times m} is nonsingular. Then there exists in neighbourhoods I of \mathbf{x} and J of \mathbf{y} with I \subseteq \mathbb{R}^n,\; J \subseteq \mathbb{R}^m, such that \mathbf{\phi}: I \to J is differentiable and

\forall (\mathbf{x},\mathbf{y}) \in I \times J: \mathbf{F}(\mathbf{x},\mathbf{y}) = \mathbf{0} \iff \mathbf{y} = \mathbf{\phi}(\mathbf{x}).

Now calculating D \mathbf{\phi}(\mathbf{x}) with the generalized chain rule

\begin{align*} \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big) &= \mathbf{0}, \ D_1 \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big) + D_2 \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big) D \mathbf{\phi}(\mathbf{x}) &= \mathbf{0}, \ \end{align*}

and we obtain

D \mathbf{\phi}(\mathbf{x}) = - \Big(D_2 \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big) \Big)^{-1} D_1 \mathbf{F}\big(\mathbf{x},\mathbf{\phi}(\mathbf{x})\big).

Proof: will be added later.