1
0
Fork 0

Finished determinants section in linear algebra.

This commit is contained in:
Luc Bijl 2024-01-18 21:09:00 +01:00
parent fb5828a787
commit faaa24fa1d

View file

@ -198,4 +198,106 @@ $$
??? note "*Proof*:" ??? note "*Proof*:"
Will be added later. If $n \times n$ matrix $B$ is singular with $n \in \mathbb{N}$ then it follows that $AB$ is also singular and therefore
$$
\det(AB) = 0 = \det(A) \det(B),
$$
If $B$ is nonsingular, $B$ can be written as a product of elementary matrices. Therefore
$$
\begin{align*}
\det(AB) &= \det(A E_k \cdots E_1)
&= \det(A)\det(E_k)\cdots\det(E_1)
&- \det(A)\det(E_K \cdots E_1)
&= \det(A)\det(B).
\end{align*}
$$
> *Theorem*: let $A$ be a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$,then we have
>
> $$
> \det(A^{-1}) = \frac{1}{\det(A)}.
> $$
??? note "*Proof*:"
Suppose $A$ is a nonsingular $n \times n$ matrix then
$$
A^{-1} A = I,
$$
and taking the determinant on both sides
$$
\det(A^{-1}A) = \det(A^{-1})\det(A) = \det(I) = 1,
$$
therefore
$$
\det(A^{-1}) = \frac{1}{\det(A)}.
$$
## The adjoint of a matrix
> *Definition*: let $A$ be an $n \times n$ matrix with $n \in \mathbb{N}$, the adjoint of $A$ is given by
>
> $$
> \mathrm{adj}(A) = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn}\end{pmatrix}
> $$
>
> with $A_{ij}$ for $(i,j) \in \{1, \dots, n\} \times \{1, \dots, n\}$ the cofactors of $A$.
The use of the adjoint becomes in the following theorem, that generally saves a lot of time and brain capacity.
> *Theorem*: let $A$ be a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$ then we have
>
> $$
> A^{-1} = \frac{1}{\det(A)} \text{ adj}(A).
> $$
??? note "*Proof*:"
Suppose $A$ is a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$, from the definition and the lemma above it follows that
$$
\text{adj}(A) A= \det(A) I,
$$
this may be rewritten into
$$
A^{-1} = \frac{1}{\det(A)} \text{ adj}(A).
$$
## Cramer's rule
> *Theorem*: let $A$ be an $n \times n$ nonsingular matrix with $n \in \mathbb{N}$ and let $\mathbf{b} \in \mathbb{R}^n$. Let $A_i$ be the matrix obtained by replacing the $i$th column of $A$ by $\mathbf{b}$. If $\mathbf{x}$ is the unique solution of $A\mathbf{x} = \mathbf{b}$ then
>
> $$
> x_i = \frac{\det(A_i)}{\det(A)}
> $$
>
> for $i \in \{1, \dots, n\}$.
??? note "*Proof*:"
Let $A$ be an $n \times n$ nonsingular matrix with $n \in \mathbb{N}$ and let $\mathbf{b} \in \mathbb{R}^n$. If $\mathbf{x}$ is the unique solution of $A\mathbf{x} = \mathbf{b}$ then we have
$$
\mathbf{x} = A^{-1} \mathbf{b} = \frac{1}{\det(A)} \text{ adj}(A) \mathbf{b}
$$
it follows that
$$
\begin{align*}
x_i &= \frac{b_1 A_1i + \dots + b_n A_{ni}}{\det(A)} \\
&= \frac{\det(A_i)}{\det(A)}
\end{align*}
$$
for $i \in \{1, \dots, n\}$.