Finished determinants section in linear algebra.
This commit is contained in:
parent
fb5828a787
commit
faaa24fa1d
1 changed files with 103 additions and 1 deletions
|
@ -198,4 +198,106 @@ $$
|
||||||
|
|
||||||
??? note "*Proof*:"
|
??? note "*Proof*:"
|
||||||
|
|
||||||
Will be added later.
|
If $n \times n$ matrix $B$ is singular with $n \in \mathbb{N}$ then it follows that $AB$ is also singular and therefore
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(AB) = 0 = \det(A) \det(B),
|
||||||
|
$$
|
||||||
|
|
||||||
|
If $B$ is nonsingular, $B$ can be written as a product of elementary matrices. Therefore
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\det(AB) &= \det(A E_k \cdots E_1)
|
||||||
|
&= \det(A)\det(E_k)\cdots\det(E_1)
|
||||||
|
&- \det(A)\det(E_K \cdots E_1)
|
||||||
|
&= \det(A)\det(B).
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
> *Theorem*: let $A$ be a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$,then we have
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \det(A^{-1}) = \frac{1}{\det(A)}.
|
||||||
|
> $$
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Suppose $A$ is a nonsingular $n \times n$ matrix then
|
||||||
|
|
||||||
|
$$
|
||||||
|
A^{-1} A = I,
|
||||||
|
$$
|
||||||
|
|
||||||
|
and taking the determinant on both sides
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A^{-1}A) = \det(A^{-1})\det(A) = \det(I) = 1,
|
||||||
|
$$
|
||||||
|
|
||||||
|
therefore
|
||||||
|
|
||||||
|
$$
|
||||||
|
\det(A^{-1}) = \frac{1}{\det(A)}.
|
||||||
|
$$
|
||||||
|
|
||||||
|
## The adjoint of a matrix
|
||||||
|
|
||||||
|
> *Definition*: let $A$ be an $n \times n$ matrix with $n \in \mathbb{N}$, the adjoint of $A$ is given by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \mathrm{adj}(A) = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn}\end{pmatrix}
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> with $A_{ij}$ for $(i,j) \in \{1, \dots, n\} \times \{1, \dots, n\}$ the cofactors of $A$.
|
||||||
|
|
||||||
|
The use of the adjoint becomes in the following theorem, that generally saves a lot of time and brain capacity.
|
||||||
|
|
||||||
|
> *Theorem*: let $A$ be a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$ then we have
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> A^{-1} = \frac{1}{\det(A)} \text{ adj}(A).
|
||||||
|
> $$
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Suppose $A$ is a nonsingular $n \times n$ matrix with $n \in \mathbb{N}$, from the definition and the lemma above it follows that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\text{adj}(A) A= \det(A) I,
|
||||||
|
$$
|
||||||
|
|
||||||
|
this may be rewritten into
|
||||||
|
|
||||||
|
$$
|
||||||
|
A^{-1} = \frac{1}{\det(A)} \text{ adj}(A).
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Cramer's rule
|
||||||
|
|
||||||
|
> *Theorem*: let $A$ be an $n \times n$ nonsingular matrix with $n \in \mathbb{N}$ and let $\mathbf{b} \in \mathbb{R}^n$. Let $A_i$ be the matrix obtained by replacing the $i$th column of $A$ by $\mathbf{b}$. If $\mathbf{x}$ is the unique solution of $A\mathbf{x} = \mathbf{b}$ then
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> x_i = \frac{\det(A_i)}{\det(A)}
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for $i \in \{1, \dots, n\}$.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Let $A$ be an $n \times n$ nonsingular matrix with $n \in \mathbb{N}$ and let $\mathbf{b} \in \mathbb{R}^n$. If $\mathbf{x}$ is the unique solution of $A\mathbf{x} = \mathbf{b}$ then we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathbf{x} = A^{-1} \mathbf{b} = \frac{1}{\det(A)} \text{ adj}(A) \mathbf{b}
|
||||||
|
$$
|
||||||
|
|
||||||
|
it follows that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
x_i &= \frac{b_1 A_1i + \dots + b_n A_{ni}}{\det(A)} \\
|
||||||
|
&= \frac{\det(A_i)}{\det(A)}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
for $i \in \{1, \dots, n\}$.
|
Loading…
Reference in a new issue