7.9 KiB
Inner product spaces
Definition
An introduction of length in a vector space may be formulated in terms of an inner product space.
Definition 1: an inner product
V
is an operation onV
that assigns, to each pair of vectors\mathbf{x},\mathbf{y} \in V
a real number\langle \mathbf{x},\mathbf{y}\rangle
satisfying the following conditions
\langle \mathbf{x},\mathbf{x}\rangle > 0, \text{ for } \mathbf{x} \in V\backslash\{\mathbf{0}\} \text{ and } \langle \mathbf{x},\mathbf{x}\rangle = 0, \; \text{for } \mathbf{x} = \mathbf{0}
,\langle \mathbf{x},\mathbf{y}\rangle = \overline{\langle \mathbf{y},\mathbf{x}\rangle}, \; \forall \mathbf{x}, \mathbf{y} \in V
,\langle a \mathbf{x} + b \mathbf{y}, \mathbf{z}\rangle = a \langle \mathbf{x},\mathbf{z}\rangle + b \langle \mathbf{y},\mathbf{z}\rangle, \; \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V \text{ and } a,b \in \mathbb{K}
.
A vector space V
with an inner product is called an inner product space.
Euclidean inner product spaces
The standard inner product on the Euclidean vector spaces V = \mathbb{R}^n
with n \in \mathbb{N}
is given by the scalar product defined by
\langle \mathbf{x},\mathbf{y}\rangle = \mathbf{x}^T \mathbf{y},
for all \mathbf{x},\mathbf{y} \in V
.
??? note "Proof:"
Will be added later.
This can be extended to matrices V = \mathbb{R}^{m \times n}
with m,n \in \mathbb{N}
for which an inner product may be given by
\langle A, B\rangle = \sum_{i=1}^m \sum_{j=1}^n a_{ij} b_{ij},
for all A, B \in V
.
??? note "Proof:"
Will be added later.
Function inner product spaces
Let V
be a function space with a domain X
. An inner product on V
may be defined by
\langle f, g\rangle = \int_X \bar f(x) g(x) dx
for all f,g \in V
.
??? note "Proof:"
Will be added later.
Polynomial inner product spaces
Let V
be a polynomial space of degree n \in \mathbb{N}
with the set of numbers \{x_i\}_{i=1}^n \subset \mathbb{K}^n
. An inner product on V
may be defined by
\langle p, q \rangle = \sum_{i=1}^n \bar p(x_i) q(x_i),
for all p,q \in V
.
??? note "Proof:"
Will be added later.
Properties of inner product spaces
Definition 2: let
V
be an inner product space, the Euclidean length\|\mathbf{v}\|
of a vector\mathbf{v}
is defined as
|\mathbf{v}| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle},
for all
\mathbf{v} \in V
.
Which is consistent with Euclidean geometry. According to definition 1 the distance between two vectors \mathbf{v}, \mathbf{w} \in V
is \|\mathbf{v} - \mathbf{w}\|
.
Definition 3: let
V
be an inner product space, the vectors\mathbf{u}
and\mathbf{v}
are orthogonal if
\langle \mathbf{u}, \mathbf{v} \rangle = 0,
for all
\mathbf{u}, \mathbf{v} \in V
.
A pair of orthogonal vectors will satisfy the theorem of Pythagoras.
Theorem 1: let
V
be an inner product space and\mathbf{u}
and\mathbf{v}
are orthogonal then
|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2,
for all
\mathbf{u}, \mathbf{v} \in V
.
??? note "Proof:"
let $V$ be an inner product space and let $\mathbf{u}, \mathbf{v} \in V$ be orthogonal, then
$$
\begin{align*}
\|\mathbf{u} + \mathbf{v}\|^2 &= \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v}\rangle, \\
&= \langle \mathbf{u}, \mathbf{u} \rangle + 2 \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle, \\
&= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.
\end{align*}
$$
Interpreted in \mathbb{R}^2
this is just the familiar Pythagorean theorem.
Definition 4: let
V
be an inner product space then the scalar projectiona
of\mathbf{u}
onto\mathbf{v}
is defined as
a = \frac{1}{|\mathbf{v}|} \langle \mathbf{u}, \mathbf{v} \rangle,
for all
\mathbf{u} \in V
and\mathbf{v} \in V \backslash \{\mathbf{0}\}
.The vector projection
p
of\mathbf{u}
onto\mathbf{v}
is defined as
\mathbf{p} = a \bigg(\frac{1}{|\mathbf{v}|} \mathbf{v}\bigg) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v},
for all
\mathbf{u} \in V
and\mathbf{v} \in V \backslash \{\mathbf{0}\}
.
It may be observed that \mathbf{u} - \mathbf{p}
and \mathbf{p}
are orthogonal since \langle \mathbf{p}, \mathbf{p} \rangle = a^2
and \langle \mathbf{u}, \mathbf{p} \rangle = a^2
which implies
\langle \mathbf{u} - \mathbf{p}, \mathbf{p} \rangle = \langle \mathbf{u}, \mathbf{p} \rangle - \langle \mathbf{p}, \mathbf{p} \rangle = a^2 - a^2 = 0.
Additionally, it may be observed that \mathbf{u} = \mathbf{p}
if and only if \mathbf{u}
is a scalar multiple of \mathbf{v}
; \mathbf{u} = b \mathbf{v}
for some b \in \mathbb{K}
. Since
\mathbf{p} = \frac{\langle b \mathbf{v}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} = b \mathbf{v} = \mathbf{u}.
Theorem 2: let
V
be an inner product space then
| \langle \mathbf{u}, \mathbf{v} \rangle | \leq | \mathbf{u} | | \mathbf{v} |,
is true for all
\mathbf{u}, \mathbf{v} \in V
. With equality only holding if and only if\mathbf{u}
and\mathbf{v}
are linearly dependent.
??? note "Proof:"
let $V$ be an inner product space and let $\mathbf{u}, \mathbf{v} \in V$. If $\mathbf{v} = \mathbf{0}$, then
$$
| \langle \mathbf{u}, \mathbf{v} \rangle | = 0 = \| \mathbf{u} \| \| \mathbf{v} \|,
$$
If $\mathbf{v} \neq \mathbf{0}$, then let $\mathbf{p}$ be the vector projection of $\mathbf{u}$ onto $\mathbf{v}$. Since $\mathbf{p}$ is orthogonal to $\mathbf{u} - \mathbf{p}$ it follows that
$$
\| \mathbf{p} \|^2 + \| \mathbf{u} - \mathbf{p} \|^2 = \| \mathbf{u} \|^2,
$$
thus
$$
\frac{1}{\|\mathbf{v}\|^2} \langle \mathbf{u}, \mathbf{v} \rangle^2 = \| \mathbf{p}\|^2 = \| \mathbf{u} \|^2 - \| \mathbf{u} - \mathbf{p} \|^2,
$$
and hence
$$
\langle \mathbf{u}, \mathbf{v} \rangle^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{p}\|^2 \|\mathbf{v}\|^2 \leq \|\mathbf{u}\|^2 \|\mathbf{v}\|^2,
$$
therefore
$$
| \langle \mathbf{u}, \mathbf{v} \rangle | \leq \| \mathbf{u} \| \| \mathbf{v} \|.
$$
Equality holds if and only if $\mathbf{u} = \mathbf{p}$. From the above observations, this condition may be restated to linear dependence of $\mathbf{u}$ and $\mathbf{v}$.
A consequence of the Cauchy-Schwarz inequality is that if \mathbf{u}
and \mathbf{v}
aer nonzero vectors in an inner product space then
-1 \leq \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\mathbf{u}| |\mathbf{v}|} \leq 1,
and hence there is a unique angle \theta \in [0, \pi]
such that
\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\mathbf{u}| |\mathbf{v}|}.
Normed spaces
Definition 5: a vector space
V
is said to be a normed linear space if to each vector\mathbf{v} \in V
there is associated a real number\| \mathbf{v} \|
satisfying the following conditions
\|\mathbf{v}\| > 0, \text{ for } \mathbf{v} \in V\backslash\{\mathbf{0}\} \text{ and } \| \mathbf{v} \| = 0, \text{ for } \mathbf{v} = \mathbf{0}
,\|a \mathbf{v}\| = |a| \|\mathbf{v}\|, \; \forall \mathbf{v} \in V \text{ and } a \in \mathbb{K}
,\| \mathbf{v} + \mathbf{w}\| \geq \|\mathbf{v}\| + \| \mathbf{w}\|, \; \forall \mathbf{v}, \mathbf{w} \in V
,is called the norm of
\mathbf{v}
.
With the third condition, the triangle inequality.
Theorem 3: let
V
be an inner product space then
| \mathbf{v} | = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle},
for all
\mathbf{v} \in V
defines a norm onV
.
??? note "Proof:"
Will be added later.
We therefore have that the Euclidean length (definition 2) is a norm, justifying the notation.