2.6 KiB
Dual vector spaces
We have a n \in \mathbb{N}
finite dimensional vector space V
such that \dim V = n
, with a basis \{\mathbf{e}_i\}_{i=1}^n
. In the following sections we make use of the Einstein summation convention introduced in vector analysis and \mathbb{K} = \mathbb{R} \lor\mathbb{K} = \mathbb{C}
.
Definition 1: let
\mathbf{\hat f}: V \to \mathbb{K}
be a covector or linear functional onV
if for all\mathbf{v}_{1,2} \in V
and\lambda, \mu \in \mathbb{K}
\mathbf{\hat f}(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \mathbf{\hat f}(\mathbf{v}_1) + \mu \mathbf{\hat f}(\mathbf{v}_2).
Throughout this section covectors will be denoted by hats to increase clarity.
Definition 2: let the the dual space
V^* \overset{\text{def}} = \mathscr{L}(V, \mathbb{K})
denote the vector space of covectors onV
.
Each basis \{\mathbf{e}_i\}
of V
therefore induces a basis \{\mathbf{\hat e}^i\}
of V^*
by
\mathbf{\hat e}^i(\mathbf{v}) = v^i,
for all \mathbf{v} = v^i \mathbf{e}_i \in V
.
Theorem 1: the dual basis
\{\mathbf{\hat e}^i\}
ofV^*
is uniquely determined by
\mathbf{\hat e}^i(\mathbf{e}_j) = \delta_j^i,
for each basis
\{\mathbf{e}_i\}
ofV
.
??? note "Proof:"
Let $\mathbf{\hat f} = f_i \mathbf{\hat e}^i \in V^*$ and let $\mathbf{v} = v^i \mathbf{e}_i \in V$, then we have
$$
\mathbf{\hat f}(\mathbf{v}) = \mathbf{\hat f}(v^i \mathbf{e}_i) = \mathbf{\hat f}(\mathbf{e}_i) v^i = \mathbf{\hat f}(\mathbf{e}_i) \mathbf{\hat e}^i(\mathbf{v}) = f_i \mathbf{\hat e}^i (\mathbf{v}),
$$
therefore $\{\mathbf{\hat e}^i\}$ spans $V^*$.
Suppose $\mathbf{\hat e}^i(\mathbf{e}_j) = \delta_j^i$ and $\lambda_i \mathbf{\hat e}^i = \mathbf{0} \in V^*$, then
$$
\lambda_i = \lambda_j \delta_i^j = \lambda_j \mathbf{\hat e}^j(\mathbf{e}_i) = (\lambda_j \mathbf{\hat e}^j)(\mathbf{e}_i) = \mathbf{0},
$$
for all $i \in \mathbb{N}[i \leq n]$. Showing that $\{\mathbf{\hat e}^i\}$ is a linearly independent set.
Obtaining a vector and consequent covector space having the same dimension n
.
From theorem 1 it follows that for each covector basis \{\mathbf{\hat e}^i\}
of V^*
and each \mathbf{\hat f} \in V^*
there exists a unique collection of numbers \{f_i\}
such that \mathbf{\hat f} = f_i \mathbf{\hat e}^i
.
Theorem 2: the dual of the covector space
(V^*)^* \overset{\text{def}} = V^{**}
is isomorphic toV
.
??? note "Proof:"
Will be added later.