14 KiB
Vector spaces
Definition
Definition: a vector space
V
is a set on which the operations of addition and scalar multiplication are defined. Such that for all vectors\mathbf{u}
and\mathbf{v}
inV
the vectors\mathbf{u} + \mathbf{v}
are inV
and for each scalara
the vectora\mathbf{v}
is inV
. With the following axioms satisfied.
- Associativity of vector addition:
\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}
for any\mathbf{u},\mathbf{v}, \mathbf{w} \in V
.- Commutativity of vector addition:
\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}
for any\mathbf{u},\mathbf{v} \in V
.- Identity element of vector addition:
\exists \mathbf{0} \in V
such that\mathbf{v} + \mathbf{0}
for all\mathbf{v} \in V
.- Inverse element of vector addition:
\forall \mathbf{v} \in V \exists (-\mathbf{v}) \in V
such that\mathbf{v} + (-\mathbf{v}) = \mathbf{0}
.- Distributivity of scalar multiplication with respect to vector addition:
a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}
for any scalara
and any\mathbf{u}, \mathbf{v} \in V
.- Distributivity of scalar multiplication with respect to field addition:
(a + b) \mathbf{v} = a \mathbf{v} + b \mathbf{v}
for any scalarsa
andb
and any\mathbf{v} \in V
.- Compatibility of scalar multiplication with field multiplication:
a(b\mathbf{v}) = (ab) \mathbf{v}
for any scalarsa
andb
and any\mathbf{v} \in V
.- Identity element of scalar multiplication:
1 \mathbf{v} = \mathbf{v}
for all\mathbf{v} \in V
.
Some important properties of a vector space can be derived from this definition in the following proposition a few have been listed.
Proposition: if
V
is a vector space and\mathbf{u}
,\mathbf{v}
is inV
, then
0 \mathbf{v} = \mathbf{0}
.\mathbf{u} + \mathbf{v} = \mathbf{0} \implies \mathbf{u} = - \mathbf{v}
.(-1)\mathbf{v} = - \mathbf{v}
.
??? note "Proof:"
For 1, suppose $\mathbf{v} \in V$ then it follows from axioms 3, 6 and 8
$$
\mathbf{v} = 1 \mathbf{v} = (1 + 0)\mathbf{v} = 1 \mathbf{v} + 0 \mathbf{v} = \mathbf{v} + 0\mathbf{v},
$$
therefore
$$
\begin{align*}
-\mathbf{v} + \mathbf{v} &= - \mathbf{v} + (\mathbf{v} + 0\mathbf{v}) = (-\mathbf{v} + \mathbf{v}) + 0\mathbf{v}, \\
\mathbf{0} &= \mathbf{0} + 0\mathbf{v} = 0\mathbf{v}.
\end{align*}
$$
For 2, suppose for $\mathbf{u}, \mathbf{v} \in V$ that $\mathbf{u} + \mathbf{v} = \mathbf{0}$ then it follows from axioms 1, 3 and 4
$$
- \mathbf{v} = - \mathbf{v} + \mathbf{0} = - \mathbf{v} + (\mathbf{v} + \mathbf{u}),
$$
therefore
$$
-\mathbf{v} = (-\mathbf{v} + \mathbf{v}) + \mathbf{u} = \mathbf{0} + \mathbf{u} = \mathbf{u}.
$$
For 3, suppose $\mathbf{v} \in V$ then it follows from 1 and axioms 4 and 6
$$
\mathbf{0} = 0 \mathbf{v} = (1 + (-1))\mathbf{v} = 1\mathbf{v} + (-1)\mathbf{v},
$$
therefore
$$
\mathbf{v} + (-1)\mathbf{v} = \mathbf{0},
$$
from 2 it follows then that
$$
(-1)\mathbf{v} = -\mathbf{v}.
$$
Euclidean spaces
Perhaps the most elementary vector spaces are the Euclidean vector spaces V = \mathbb{R}^n
with n \in \mathbb{N}
. Given a nonzero vector \mathbf{u} \in \mathbb{R}^n
defined by
\mathbf{u} = \begin{pmatrix}u_1 \ \vdots \ u_n\end{pmatrix},
it may be associated with the directed line segment from (0, \dots, 0)
to (u_1, \dots, u_n)
. Or more generally line segments that have the same length and direction can be represented by any line segment from (a_1, \dots, a_n)
to (a_1 + u_1, \dots, a_n + u_n)
. Vector addition and scalar multiplication in \mathbb{R}^n
are respectively defined by
\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 \ \vdots \ u_n + v_n \end{pmatrix} \quad \text{ and } \quad a \mathbf{u} = \begin{pmatrix} a u_1 \ \vdots \ a u_n \end{pmatrix},
for any \mathbf{u}, \mathbf{v} \in \mathbb{R}^n
and any scalar a
.
This can be extended to matrices with V = \mathbb{R}^{m \times n}
with m,n \in \mathbb{N}
, the set of all matrices. Given a nonzero matrix A \in \mathbb{R}^{m \times n}
defined by A = (a_{ij})
. Matrix addition and scalar multiplication in \mathbb{R}^{m \times n}
are respectively defined by
A + B = C \iff a_{ij} + b_{ij} = c_{ij} \quad \text{ and } \quad \alpha A = C \iff \alpha a_{ij} = c_{ij},
for any A, B, C \in \mathbb{R}^{m \times n}
and any scalar \alpha
.
Function spaces
Let V
be a vector space over a field F
and let X
be any set. The functions X \to F
can be given the structure of a vector space over F
where the operations are defined by
\begin{align*}
(f + g)(x) = f(x) + g(x), \
(af)(x) = af(x),
\end{align*}
for any f,g: X \to F
, any x \in X
and any a \in F
.
Polynomial spaces
Let P_n
denote the set of all polynomials of degree less than n \in \mathbb{N}
where the operations are defined by
\begin{align*}
(p+q)(x) = p(x) + q(x), \
(ap)(x) = ap(x),
\end{align*}
for any p,q: X \to P_n
, any x \in X
and any a \in P_n
.
Vector subspaces
Definition: if
S
is a nonempty subset of a vector spaceV
andS
satisfies the conditions
a \mathbf{u} \in S
whenever\mathbf{u} \in S
for any scalara
.\mathbf{u} + \mathbf{v} \in S
whenever\mathbf{u}, \mathbf{v} \in S
.then
S
is said to be a subspace ofV
.
In a vector space V
it can be readily verified that \{\mathbf{0}\}
and V
are subspaces of V
. All other subspaces are referred to as proper subspaces and \{\mathbf{0}\}
is referred to as the zero subspace.
Theorem: Every subspace of a vector space is a vector space.
??? note "Proof:"
May be proved by testing if all axioms remain valid for the definition of a subspace.
The null space of a matrix
Definition: let
A \in \mathbb{R}^{m \times n}
,\mathbf{x} \in \mathbb{R}^n
and letN(A)
denote the set of all solutions of the homogeneous systemA\mathbf{x} = \mathbf{0}
. Therefore
N(A) = {\mathbf{x} \in \mathbb{R}^n ;|; A \mathbf{x} = \mathbf{0}},
referred to as the null space of
A
.
Claiming that N(A)
is a subspace of \mathbb{R}^n
. Clearly \mathbf{0} \in N(A)
so N(A)
is nonempty. If \mathbf{x} \in N(A)
and \alpha
is a scalar then
A(\alpha \mathbf{x}) = \alpha A\mathbf{x} = \alpha \mathbf{0} = \mathbf{0}
and hence \alpha \mathbf{x} \in N(A)
. If \mathbf{x}, \mathbf{y} \in N(A)
then
A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}
therefore \mathbf{x} + \mathbf{y} \in N(A)
and it follows that N(A)
is a subspace of \mathbb{R}^n
.
The span of a set of vectors
Definition: let
\mathbf{v}_1, \dots, \mathbf{v}_n
be vectors in a vector spaceV
withn \in \mathbb{N}
. A sum of the form
a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n,
with scalars
a_1, \dots, a_n
is called a linear combination of\mathbf{v}_1, \dots, \mathbf{v}_n
.The set of all linear combinations of
\mathbf{v}_1, \dots, \mathbf{v}_n
is called the span of\mathbf{v}_1, \dots, \mathbf{v}_n
which is denoted by\text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)
.
The nullspace can be for example defined by a span of vectors.
Theorem: if
\mathbf{v}_1, \dots, \mathbf{v}_n
are vectors in a vector spaceV
withn \in \mathbb{N}
then\text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)
is a subspace ofV
.
??? note "Proof:"
Let $b$ be a scalar and $\mathbf{u} \in \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$ given by
$$
a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n,
$$
with scalars $a_1, \dots, a_n$. Since
$$
b \mathbf{u} = (b a_1)\mathbf{v}_1 + \dots + (b a_n)\mathbf{v}_n,
$$
it follows that $b \mathbf{u} \in \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$.
If we also have $\mathbf{w} \in \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$ given by
$$
b_1 \mathbf{v}_1 + \dots + b_n \mathbf{v}_n,
$$
with scalars $b_1, \dots, b_n$. Then
$$
\mathbf{u} + \mathbf{w} = (a_1 + b_1) \mathbf{v}_1 + \dots + (a_n + b_n)\mathbf{v}_n,
$$
it follows that $\mathbf{u} + \mathbf{w} \in \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$ is a subspace of $V$.
For example, a vector \mathbf{x} \in \mathbb{R}^3
is in \text{Span}(\mathbf{e}_1, \mathbf{e}_2)
if and only if it lies in the $x_1 x_2$-plane in 3-space. Thus we can think of the $x_1 x_2$-plane as the geometrical representation of the subspace \text{Span}(\mathbf{e}_1, \mathbf{e}_2)
.
Definition: the set
\{\mathbf{v}_1, \dots, \mathbf{v}_n\}
withn \in \mathbb{N}
is a spanning set forV
if and only if every vectorV
can be written as a linear combination of\mathbf{v}_1, \dots, \mathbf{v}_n
.
Linear independence
We have the following observations.
Proposition: if
\mathbf{v}_1, \dots, \mathbf{v}_n
withn \in \mathbb{N}
span a vector spaceV
and one of these vectors can be written as a linear combination of the othern-1
vectors then thosesn-1
vectors spanV
.
??? note "Proof:"
suppose $\mathbf{v}_n$ with $n \in \mathbb{N}$ can be written as a linear combination of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_{n-1}$ given by
$$
\mathbf{v}_n = a_1 \mathbf{v}_1 + \dots + a_{n-1} \mathbf{v}_{n-1}.
$$
Let $\mathbf{v}$ be any element of $V$. Since we have
$$
\begin{align*}
\mathbf{v} &= b_1 \mathbf{v}_1 + \dots + b_{n-1} \mathbf{v}_{n-1} + b_n \mathbf{v}_n, \\
&= b_1 \mathbf{v}_1 + \dots + b_{n-1} \mathbf{v}_{n-1} + b_n (a_1 \mathbf{v}_1 + \dots + a_{n-1} \mathbf{v}_{n-1}), \\
&= (b_1 + b_n a_1)\mathbf{v}_1 + \dots + (b_{n-1} + b_n a_{n-1}) \mathbf{v}_{n-1},
\end{align*}
$$
we can write any vector $\mathbf{v} \in V$ as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_{n-1}$ and hence these vectors span $V$.
Proposition: given
n
vectors\mathbf{v}_1, \dots, \mathbf{v}_n
withn \in \mathbb{N}
, it is possible to write one of the vectors as a linear combination of the othern-1
vectors if and only if there exist scalarsa_1, \dots, a_n
not all zero such that
a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n = \mathbf{0}.
??? note "Proof:"
Suppose that one of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ with $n \in \mathbb{N}$ can be written as a linear combination of the others
$$
\mathbf{v}_n = a_1 \mathbf{v}_1 + \dots + a_{n-1} \mathbf{v}_{n-1}.
$$
Subtracting $\mathbf{v}_n$ from both sides obtains
$$
a_1 \mathbf{v}_1 + \dots + a_{n-1} \mathbf{v}_{n-1} - \mathbf{v}_n = \mathbf{0},
$$
we have $a_n = -1$ and
$$
a_1 \mathbf{v}_1 + \dots + a_n\mathbf{v}_n = \mathbf{0}.
$$
We may use these oberservations to state the following definitions.
Definition: the vectors
\mathbf{v}_1, \dots, \mathbf{v}_n
in a vector spaceV
withn \in \mathbb{N}
are said to be linearly independent if
a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n = \mathbf{0} \implies \forall i \in {1, \dots, n} [c_i = 0].
It follows from the above propositions that if \{\mathbf{v}_1, \dots, \mathbf{v}_n\}
is a minimal spanning set of a vector space V
then \mathbf{v}_1, \dots, \mathbf{v}_n
are linearly independent. A minimal spanning set is called a basis of the vector space.
Definition: the vectors
\mathbf{v}_1, \dots, \mathbf{v}_n
in a vector spaceV
withn \in \mathbb{N}
are said to be linearly dependent if there exists scalarsa_1, \dots, a_n
not all zero such that
a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n = \mathbf{0}.
It follows from the above propositions that if a set of vectors is linearly dependent then at least one vector is a linear combination of the other vectors.
Theorem: let
\mathbf{x}_1, \dots, \mathbf{x}_n
be vectors in\mathbb{R}^n
withn \in \mathbb{N}
and letX = (\mathbf{x}_1, \dots, \mathbf{x}_n)
. The vectors\mathbf{x}_1, \dots, \mathbf{x}_n
will be linearly dependent if and only ifX
is singular.
??? note "Proof:"
Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be vectors in $\mathbb{R}^n$ with $n \in \mathbb{N}$ and let $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)$. Suppose we have the linear combination given by
$$
a_1 \mathbf{x}_1 + \dots + a_n \mathbf{x}_n = \mathbf{0},
$$
can be rewritten as a matrix equation by
$$
X\mathbf{a} = \mathbf{0},
$$
with $\mathbf{a} = (a_1, \dots, a_n)^T$. This equation will have a nontrivial solution if and only if $X$ is singular. Therefore $\mathbf{x}_1, \dots, \mathbf{x}_n$ will be linearly dependent if and only if $X$ is singular.
This result can be used to test whether n
vectors are linearly independent in \mathbb{R}^n
for n \in \mathbb{N}
.
Theorem: let
\mathbf{v}_1, \dots, \mathbf{v}_n
be vectors in a vector spaceV
withn \in \mathbb{N}
. A vector\mathbf{v} \in \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)
can be written uniquely as a linear combination of\mathbf{v}_1, \dots, \mathbf{v}_n
if and only if\mathbf{v}_1, \dots, \mathbf{v}_n
are linearly independent.
??? note "Proof:"
If $\mathbf{v} \in \text{Span}(\mathbf{v}_1, \dots \mathbf{v}_n)$ with $n \in \mathbb{N}$ then $\mathbf{v}$ can be written as a linear combination
$$
\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n.
$$
Suppose that $\mathbf{v}$ can also be expressed as a linear combination
$$
\mathbf{v} = b_1 \mathbf{v}_1 + \dots + b_n \mathbf{v}_n.
$$
If $\mathbf{v}_1, \dots \mathbf{v}_n$ are linearly independent then subtracting both expressions yields
$$
(a_1 - b_1)\mathbf{v}_1 + \dots + (a_n - b_n)\mathbf{v}_n = \mathbf{0}.
$$
By the linear independence of $\mathbf{v}_1, \dots \mathbf{v}_n$, the coefficients must all be 0, hence
$$
a_1 = b_1,\; \dots \;, a_n = b_n
$$
therefore the representation of $\mathbf{v}$ is unique when $\mathbf{v}_1, \dots \mathbf{v}_n$ are linearly independent.
On the other hand if $\mathbf{v}_1, \dots \mathbf{v}_n$ are linearly dependent then the coefficients must not all be 0 and $a_i \neq b_i$ for some $i \in \{1, \dots, n\}$. Therefore the representation of $\mathbf{v}$ is not unique when $\mathbf{v}_1, \dots \mathbf{v}_n$ are linearly dependent.