2.9 KiB
Fourier transformations
Definition of the Fourier transform
Definition: let
f, F: \mathbb{R} \to \mathbb{C}
, the Fourier transform off
is given by
F(\omega) = \int_{-\infty}^\infty f(t) e^{-i \omega t}dt,
for all
\omega \in \mathbb{R}
. The inverse Fourier transform ofF
is given by
f(t) = \frac{1}{2\pi} \int_{-\infty}^\infty F(\omega) e^{i \omega t} d\omega,
for all
t \in \mathbb{R}
. Thereforef
andF
form a Fourier transform pair denoted by
f \overset{\mathcal{F}}\longleftrightarrow F,
therefore we have
\begin{align*} &f(t) = \mathcal{F}^{-1}[F(\omega)], \quad &\forall t \in \mathbb{R}, \ &F(\omega) = \mathcal{F}[f(t)], \quad &\forall \omega \in \mathbb{R}. \end{align*}
Properties of the Fourier transform
Proposition: let
f, g, F, G: \mathbb{R} \to \mathbb{C}
, we have linearity given by
af(t) + bg(t) \overset{\mathcal{F}}\longleftrightarrow aF(\omega) + bG(\omega),
with
a,b \in \mathbb{C}
.
??? note "Proof:"
Will be added later.
Proposition: let
f,F: \mathbb{R} \to \mathbb{C}
, we have time shifting given by
f(t - t_0) \overset{\mathcal{F}}\longleftrightarrow F(\omega) e^{-i\omega t_0},
with
t_0 \in \mathbb{R}
.
??? note "Proof:"
Will be added later.
Proposition: let
f,F: \mathbb{R} \to \mathbb{C}
, we have frequency shifting given by
e^{i \omega_0 t} f(t) \overset{\mathcal{F}}\longleftrightarrow F(\omega - \omega_0)
with
\omega_0 \in \mathbb{R}
.
??? note "Proof:"
Will be added later.
Proposition: let
f,F: \mathbb{R} \to \mathbb{C}
, we have time or frequency scaling given by
f(t/a) \overset{\mathcal{F}}\longleftrightarrow |a| F(a\omega)
with
a \in \mathbb{R}
.
??? note "Proof:"
Will be added later.
Proposition: let
f, g, F, G: \mathbb{R} \to \mathbb{C}
, we have time convolution given by
f(t) * g(t) \overset{\mathcal{F}}\longleftrightarrow F(\omega) G(\omega).
??? note "Proof:"
Will be added later.
Proposition: let
f, g, F, G: \mathbb{R} \to \mathbb{C}
, we have frequency convolution given by
f(t) g(t) \overset{\mathcal{F}}\longleftrightarrow \frac{1}{2\pi} F(\omega) * G(\omega).
??? note "Proof:"
Will be added later.
Proposition: let
f,F: \mathbb{R} \to \mathbb{C}
be differentiable, we have time differentation given by
f'(t) \overset{\mathcal{F}}\longleftrightarrow i \omega F(\omega).
??? note "Proof:"
Will be added later.
Proposition: let
f,F: \mathbb{R} \to \mathbb{C}
be differentiable, we have time integration given by
\int_{-\infty}^t f(u)du \overset{\mathcal{F}}\longleftrightarrow \frac{1}{i\omega} F(\omega) + \pi F(0)\delta(\omega).
??? note "Proof:"
Will be added later.