1
0
Fork 0
mathematics-physics-wiki/docs/en/mathematics/multivariable-calculus/taylor-polynomials.md
2024-01-03 13:46:55 +01:00

39 lines
No EOL
1.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Taylor polynomials
For $D \subseteq \mathbb{R}^n$ let $f: D \to \mathbb{R}$ sufficiently often differentiable, we have $\mathbf{a} \in D$. Find a polynomial $T: \mathbb{R}^n \to \mathbb{R}$ such that
$$
\partial^\beta T(\mathbf{a}) = \partial^\beta f(\mathbf{a}).
$$
Ansatz: let $T(\mathbf{x}) = \sum_{|\alpha| \leq n} c_\alpha (\mathbf{x} - \mathbf{a})^\alpha$. Then
$$
\partial^\beta T(\mathbf{x}) = \sum_{|\alpha| \leq n,\; \alpha \geq \beta} c_\alpha \frac{\alpha!}{(\alpha - \beta)!} (\mathbf{x} - \mathbf{a})^{\alpha - \beta}.
$$
Choose $\mathbf{x} = \mathbf{a}$: $\partial^\beta T(\mathbf{a}) = c_\beta \beta! = \partial^\beta f(\mathbf{a}) \implies c_\beta = \frac{\partial^\beta f(\mathbf{a})}{\beta!}$. Therefore we obtain
$$
T(\mathbf{x}) = \sum_{|\alpha| \leq n} \frac{\partial^\alpha f(\mathbf{a})}{\alpha!} (\mathbf{x} - \mathbf{a})^\alpha.
$$
*Theorem*: suppose $x \in D$ and the line segment $[\mathbf{a},\mathbf{x}]$ lies completely in $D$. Set $\mathbf{h} = \mathbf{x} - \mathbf{a}$. Then there is a $\theta \in (0,1)$ such that
$$
f(\mathbf{x}) = T(\mathbf{x}) + \frac{1}{(n+1)!} \partial_\mathbf{h}^{n+1} f(\mathbf{a} + \theta \mathbf{h}).
$$
??? note "*Proof*:"
Apply Taylors theorem in 1D and the chain rule to the function $\phi : [0, 1] \to \mathbb{R}$ given by
$$
\phi(\theta) := f(\mathbf{a} + \theta \mathbf{h}).
$$
## Other methods
Creating multivariable Taylor polynomials by using 1D Taylor polynomials of the different variables and composing them.
### Example