1
0
Fork 0
mathematics-physics-wiki/docs/en/mathematics/differential-geometry/derivatives.md

2.9 KiB

Derivatives

Let \mathrm{M} be a differential manifold with \dim \mathrm{M} = n \in \mathbb{N} used throughout the section. Let \mathrm{TM} and \mathrm{T^*M} denote the tangent and cotangent bundle, V and V^* the fiber and dual fiber bundle and \mathscr{B} the tensor fiber bundle.

Lie derivative

Definition 1: the Lie derivative on a section of a tangent bundle \mathscr{L}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to \Gamma(\mathrm{TM}) is a map defined by

\mathscr{L}_\mathbf{w} \mathbf{v} = \mathbf{w} \circ \mathbf{v} - \mathbf{v} \circ \mathbf{w} = [\mathbf{w}, \mathbf{v}],

for all \mathbf{w}, \mathbf{v} \in \Gamma(\mathrm{TM}).

In which the bracket formulation is also referred to as the Lie bracket.

Proposition 1: the Lie derivative can be decomposed into

\mathscr{L}\mathbf{w} \mathbf{v} = \mathscr{L}\mathbf{w}^i \mathbf{v} \partial_i = (w^j \partial_j v^i - v^j \partial_j w^i) \partial_i,

for all \mathbf{w}, \mathbf{v} \in \Gamma(\mathrm{TM}).

??? note "Proof:"

Will be added later.

Exterior derivative

Definition 2: the exterior derivative d: \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big) \to \Gamma \big(\bigwedge_{k+1}(\mathrm{T}\mathrm{M}) \big) of a $k$-form field, k \in \mathbb{N}[k \leq n] is the $(k+1)$-form field

\begin{align*} d \bm{\omega} &= d \omega_{|i_1 \dots i_k|} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}, \ &= \partial_j \omega_{|i_1 \dots i_k|} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}, \end{align*}

for all \bm{\omega} \in \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big).

From the definition of the exterior definition the following results arises.

Theorem 1: we have that

  1. \forall\bm{\omega} \in \Gamma \big(\bigwedge_n(\mathrm{T}\mathrm{M}) \big): d \bm{\omega} = \mathbf{0},
  2. \forall\bm{\omega} \in \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big), k \in \mathbb{N}[k \leq n]: d^2 \bm{\omega} = \mathbf{0}.

??? note "Proof:"

Will be added later.

Hodge star operator

Definition 3: the hodge star operator *: \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big) \to \Gamma \big(\bigwedge_{n-k}(\mathrm{T}\mathrm{M}) \big) with k \in \mathbb{N}[k \leq n] has the following properties

  1. \forall \bm{\omega} \in \Gamma \big(\bigwedge_0(\mathrm{T}\mathrm{M}) \big): * \bm{\omega} = \bm{\epsilon},
  2. * (dx^{i_1} \wedge \dots \wedge dx^{i_k}) = \bm{\epsilon} \lrcorner \mathbf{g}^{-1}(dx^{i_1}) \lrcorner \dots \lrcorner \mathbf{g}^{-1}(dx^{i_k}),

for all dx^{i_1} \wedge \dots \wedge dx^{i_k} \in \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big) with \bm{\epsilon} the Levi-Civita tensor \bm{\epsilon} \in \big(\bigwedge_n(\mathrm{T}\mathrm{M}) \big) and \mathbf{g}^{-1}: \Gamma(\mathrm{T}^*\mathrm{M}) \to \Gamma(\mathrm{T}\mathrm{M}) the dual metric.