Added dual vector spaces and layout for tensors.
This commit is contained in:
parent
8198f285b2
commit
9457c2fa5c
7 changed files with 64 additions and 1 deletions
|
@ -91,6 +91,11 @@ nav:
|
||||||
- 'Inner product spaces': mathematics/linear-algebra/inner-product-spaces.md
|
- 'Inner product spaces': mathematics/linear-algebra/inner-product-spaces.md
|
||||||
- 'Orthogonality': mathematics/linear-algebra/orthogonality.md
|
- 'Orthogonality': mathematics/linear-algebra/orthogonality.md
|
||||||
- 'Eigenspaces': mathematics/linear-algebra/eigenspaces.md
|
- 'Eigenspaces': mathematics/linear-algebra/eigenspaces.md
|
||||||
|
- 'Dual vector spaces': mathematics/linear-algebra/dual-vector-spaces.md
|
||||||
|
- 'Tensors':
|
||||||
|
- 'Tensor formalism': mathematics/linear-algebra/tensors/tensor-formalism.md
|
||||||
|
- 'Tensor symmetries': mathematics/linear-algebra/tensors/tensor-symmetries.md
|
||||||
|
- 'Volume forms': mathematics/linear-algebra/tensors/volume-forms.md
|
||||||
- 'Calculus':
|
- 'Calculus':
|
||||||
- 'Limits': mathematics/calculus/limits.md
|
- 'Limits': mathematics/calculus/limits.md
|
||||||
- 'Continuity': mathematics/calculus/continuity.md
|
- 'Continuity': mathematics/calculus/continuity.md
|
||||||
|
|
57
docs/en/mathematics/linear-algebra/dual-vector-spaces.md
Normal file
57
docs/en/mathematics/linear-algebra/dual-vector-spaces.md
Normal file
|
@ -0,0 +1,57 @@
|
||||||
|
# Dual vector spaces
|
||||||
|
|
||||||
|
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$. In the following sections we make use of the Einstein summation convention introduced in [vector analysis](/en/physics/mathematical-physics/vector-analysis/curvilinear-coordinates/) and $\mathbb{K} = \mathbb{R} \lor\mathbb{K} = \mathbb{C}$.
|
||||||
|
|
||||||
|
> *Definition 1*: let $\mathbf{\hat f}: V \to \mathbb{K}$ be a **covector** or **linear functional** on $V$ if for all $\mathbf{v}_{1,2} \in V$ and $\lambda, \mu \in \mathbb{K}$
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \mathbf{\hat f}(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \mathbf{\hat f}(\mathbf{v}_1) + \mu \mathbf{\hat f}(\mathbf{v}_2).
|
||||||
|
> $$
|
||||||
|
|
||||||
|
Throughout this section covectors will be denoted by hats to increase clarity.
|
||||||
|
|
||||||
|
> *Definition 2*: let the the dual space $V^* \overset{\text{def}} = \mathscr{L}(V, \mathbb{K})$ denote the vector space of covectors on $V$.
|
||||||
|
|
||||||
|
Each basis $\{\mathbf{e}_i\}$ of $V$ therefore induces a basis $\{\mathbf{\hat e}^i\}$ of $V^*$ by
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathbf{\hat e}^i(\mathbf{v}) = v^i,
|
||||||
|
$$
|
||||||
|
|
||||||
|
for all $\mathbf{v} = v^i \mathbf{e}_i \in V$.
|
||||||
|
|
||||||
|
> *Theorem 1*: the dual basis $\{\mathbf{\hat e}^i\}$ of $V^*$ is uniquely determined by
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> \mathbf{\hat e}^i(\mathbf{e}_j) = \delta_j^i,
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> for each basis $\{\mathbf{e}_i\}$ of $V$.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Let $\mathbf{\hat f} = f_i \mathbf{\hat e}^i \in V^*$ and let $\mathbf{v} = v^i \mathbf{e}_i \in V$, then we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathbf{\hat f}(\mathbf{v}) = \mathbf{\hat f}(v^i \mathbf{e}_i) = \mathbf{\hat f}(\mathbf{e}_i) v^i = \mathbf{\hat f}(\mathbf{e}_i) \mathbf{\hat e}^i(\mathbf{v}) = f_i \mathbf{\hat e}^i (\mathbf{v}),
|
||||||
|
$$
|
||||||
|
|
||||||
|
therefore $\{\mathbf{\hat e}^i\}$ spans $V^*$.
|
||||||
|
|
||||||
|
Suppose $\mathbf{\hat e}^i(\mathbf{e}_j) = \delta_j^i$ and $\lambda_i \mathbf{\hat e}^i = \mathbf{0} \in V^*$, then
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lambda_i = \lambda_j \delta_i^j = \lambda_j \mathbf{\hat e}^j(\mathbf{e}_i) = (\lambda_j \mathbf{\hat e}^j)(\mathbf{e}_i) = \mathbf{0},
|
||||||
|
$$
|
||||||
|
|
||||||
|
for all $i \in \mathbb{N}[i \leq n]$. Showing that $\{\mathbf{\hat e}^i\}$ is a linearly independent set.
|
||||||
|
|
||||||
|
Obtaining a vector and consequent covector space having the same dimension $n$.
|
||||||
|
|
||||||
|
From theorem 1 it follows that for each covector basis $\{\mathbf{\hat e}^i\}$ of $V^*$ and each $\mathbf{\hat f} \in V^*$ there exists a unique collection of numbers $\{f_i\}$ such that $\mathbf{\hat f} = f_i \mathbf{\hat e}^i$.
|
||||||
|
|
||||||
|
> *Theorem 2*: the dual of the covector space $(V^*)^* \overset{\text{def}} = V^{**}$ is isomorphic to $V$.
|
||||||
|
|
||||||
|
??? note "*Proof*:"
|
||||||
|
|
||||||
|
Will be added later.
|
|
@ -42,7 +42,7 @@ Furthermore it follows from the definition that any linear combination of eigenv
|
||||||
A \mathbf{x} - \lambda \mathbf{x} = (A - \lambda I) \mathbf{x} = \mathbf{0},
|
A \mathbf{x} - \lambda \mathbf{x} = (A - \lambda I) \mathbf{x} = \mathbf{0},
|
||||||
$$
|
$$
|
||||||
|
|
||||||
which implies that $(A - \lambda I)$ is singular and $\det(A - \lambda I) = 0$ by [definition](..//determinants/#properties-of-determinants).
|
which implies that $(A - \lambda I)$ is singular and $\det(A - \lambda I) = 0$ by [definition](../determinants/#properties-of-determinants).
|
||||||
|
|
||||||
The eigenvalues $\lambda$ may thus be determined from the **characteristic polynomial** of degree $n$ that is obtained from $\det (A - \lambda I) = 0$. In particular, the eigenvalues are the roots of this polynomial.
|
The eigenvalues $\lambda$ may thus be determined from the **characteristic polynomial** of degree $n$ that is obtained from $\det (A - \lambda I) = 0$. In particular, the eigenvalues are the roots of this polynomial.
|
||||||
|
|
||||||
|
|
|
@ -104,6 +104,7 @@ With these definitions the following theorem may be posed.
|
||||||
It has therefore been established that each linear transformation from $\mathbb{R}^n$ to $\mathbb{R}^m$ can be represented in terms of an $m \times n$ matrix.
|
It has therefore been established that each linear transformation from $\mathbb{R}^n$ to $\mathbb{R}^m$ can be represented in terms of an $m \times n$ matrix.
|
||||||
|
|
||||||
> *Theorem*: let $E = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ and $F = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ be two ordered bases for a vector space $V$, and let $L: V \to V$ be a linear operator on $V$, $\dim V = n \in \mathbb{N}$. Let $S$ be the $n \times n$ transition matrix representing the change from $F$ to $E$,
|
> *Theorem*: let $E = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ and $F = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ be two ordered bases for a vector space $V$, and let $L: V \to V$ be a linear operator on $V$, $\dim V = n \in \mathbb{N}$. Let $S$ be the $n \times n$ transition matrix representing the change from $F$ to $E$,
|
||||||
|
>
|
||||||
> $$
|
> $$
|
||||||
> \mathbf{e}_i = S \mathbf{f}_i,
|
> \mathbf{e}_i = S \mathbf{f}_i,
|
||||||
> $$
|
> $$
|
||||||
|
|
Loading…
Reference in a new issue