6.7 KiB
Signals
Definitions
Definition: a signal is a function of space and time.
- Output can be analog or quantised.
- Input can be continuous or discrete.
Definition: a signal can be sampled at particular moments
k T_s
in time, withk \in \mathbb{Z}
andT_s \in \mathbb{R}
the sampling period. For a signalf: \mathbb{R} \to \mathbb{R}
sampled with a sampling periodT_s
may be denoted by
f[k] = f(kT_s), \qquad \forall k \in \mathbb{Z}.
Definition: signal transformations on a function
x: \mathbb{R} \to \mathbb{R}
obtaining the functiony: \mathbb{R} \to \mathbb{R}
are given by
Signal transformation Time Amplitude Reversal y(t) = x(-t)
y(t) = -x(t)
Scaling y(t) = x(at)
y(t) = ax(t)
Shifting y(t) = x(t - b)
y(t) = x(t) + b
for all
t \in \mathbb{R}
.
For sampled signals similar definitions hold.
Symmetry
Definition: consider a signal
f: \mathbb{R} \to \mathbb{R}
which is defined in an interval which is symmetric aroundt = 0
, we define.
f
is even iff(t) = f(-t)
,\forall t \in \mathbb{R}
.f
is odd iff(t) = -f(-t)
,\forall t \in \mathbb{R}
.
For sampled signals similar definitions hold.
Theorem: every signal can be decomposed into symmetric parts.
??? note "Proof:"
Will be added later.
Periodicity
Definition: a signal
f: \mathbb{R} \to \mathbb{R}
is defined to be periodic inT
if and only if
f(t + T) = f(t), \qquad \forall t \in \mathbb{R}.
For sampled signals similar definitions hold.
Theorem: a summation of two periodic signals with periods
T_1, T_2 \in \mathbb{R}
respectively is periodic if and only if
\frac{T_1}{T_2} \in \mathbb{Q}.
??? note "Proof:"
Will be added later.
Signals
Definition: the Heaviside step signal
u: \mathbb{R} \to \mathbb{R}
is defined by
u(t) = \begin{cases} 1 &\text{ if } t > 0,\ 0 &\text{ if } t < 0,\end{cases}
for all
t \in \mathbb{R}
.
For a sampled function the Heaviside step signal is given by
u[k] = \begin{cases} 1 \text{ if } k \geq 0, \ 0 \text{ if } k < 0, \end{cases}
for all k \in \mathbb{Z}
.
Definition: the rectangular signal
\text{rect}: \mathbb{R} \to \mathbb{R}
is defined by
\text{rect} (t) = \begin{cases} 1 &\text{ if } |t| < \frac{1}{2}, \ 0 &\text{ if } |t| > \frac{1}{2},\end{cases}
for all
t \in \mathbb{R}
.
The rect signal can be normalised obtaining the scaled rectangular signal D: \mathbb{R} \to \mathbb{R}
defined by
D(t, \varepsilon) = \begin{cases} \frac{1}{\varepsilon} &\text{ if } |t| < \frac{\varepsilon}{2},\ 0 &\text{ if } |t| > \frac{\varepsilon}{2},\end{cases}
for all t \in \mathbb{R}
.
The following signal has been derived from the scaled rectangular signal D: \mathbb{R} \to \mathbb{R}
used on a signal f: \mathbb{R} \to \mathbb{R}
for
\lim_{\varepsilon ;\downarrow; 0} \int_{-\infty}^{\infty} f(t) D(t, \varepsilon)dt = \lim_{\varepsilon ;\downarrow; 0} \frac{1}{\varepsilon} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} f(t) dt = f(0),
using the mean value theorem for integrals.
Definition: the Dirac signal
\delta
is a generalized signal defined by the properties
\begin{align*} \delta(t - t_0) = 0 \quad \text{ for } t \neq t_0,& \ \int_{-\infty}^\infty f(t) \delta(t - t_0) dt = f(t_0),& \end{align*}
for a signal
f: \mathbb{R} \to \mathbb{R}
continuous int_0
.
For sampled signals the \delta
signal is given by
\delta[k] = \begin{cases} 1 &\text{ if } k = 0, \ 0 &\text{ if } k \neq 0.\end{cases}
Signal sampling
We already established that a signal f: \mathbb{R} \to \mathbb{R}
can be sampled with a sampling period T_s \in \mathbb{R}
obtaining f[k] = f(kT_s)
for all k \in \mathbb{Z}
. We can also define a time-continuous signal f_s(t)
that represents the sampled signal using the Dirac signal, obtaining
f_s(t) = f(t) \sum_{k = - \infty}^\infty \delta(t - k T_s), \qquad \forall t \in \mathbb{R}.
Definition: the sampling signal or impulse train
\delta_{T_s}: \mathbb{R} \to \mathbb{R}
is defined as
\delta_{T_s}(t) = \sum_{k = - \infty}^\infty \delta(t - k T_s)
for all
t \in \mathbb{R}
with a sampling periodT_s \in \mathbb{R}
.
Then integration works out since we have
\int_{-\infty}^\infty f(t) \delta_{T_s}(t) dt = \sum_{k = -\infty}^\infty \int_{-\infty}^\infty f(t) \delta(t - k T_s) dt = \sum_{k = -\infty}^\infty f [k],
by definition.
Convolutions
Definition: let
f,g: \mathbb{R} \to \mathbb{R}
be two continuous signals, the convolution product is defined as
f(t) * g(t) = \int_{-\infty}^\infty f(u)g(t-u)du
for all
t \in \mathbb{R}
.
Proposition: the convolution product is commutative, distributive and associative.
??? note "Proof:"
Will be added later.
Theorem: let
f: \mathbb{R} \to \mathbb{R}
be a signal then we have for the convolution product betweenf
and the Dirac signal\delta
and somet_0 \in \mathbb{R}
f(t) * \delta(t - t_0) = f(t - t_0)
for all
t \in \mathbb{R}
.
??? note "Proof:"
let $f: \mathbb{R} \to \mathbb{R}$ be a signal and $t_0 \in \mathbb{R}$, using the definition of the Dirac signal
$$
f(t) * \delta(t - t_0) = \int_{-\infty}^\infty f(u) \delta(t - t_0 - u)du = f(t - t_0),
$$
for all $t \in \mathbb{R}$.
In particular f(t) * \delta(t) = f(t)
for all t \in \mathbb{R}
; \delta
is the unity of the convolution.
The average value of a signal f: \mathbb{R} \to \mathbb{R}
for an interval \varepsilon \in \mathbb{R}
may be given by
f(t) * D(t, \varepsilon) = \frac{1}{\varepsilon} \int_{t - \frac{\varepsilon}{2}}^{t + \frac{\varepsilon}{2}} f(u)du.
For sampled/discrete signals we have a similar definition for the convolution product, given by
f[k] * g[k] = \sum_{m = -\infty}^{\infty} f[m]g[k - m],
for all k \in \mathbb{Z}
.
Correlations
Definition: let
f,g: \mathbb{R} \to \mathbb{R}
be two continuous signals, the cross-correlation is defined as
f(t) \star g(t) = \int_{-\infty}^\infty f(u) g(t + u)du
for all
t \in \mathbb{R}
.
Especially the auto-correlation of a continuous signal f: \mathbb{R} \to \mathbb{R}
given by f(t) \star f(t)
for all t \in \mathbb{R}
is useful, as it can detect periodicity without stating the proof.
For sampled/discrete signals a similar definition exists given by
f[k] \star g[k] = \sum_{m = -\infty}^{\infty} f[m]g[k + m],
for all k \in \mathbb{Z}
.